论文标题
用于流体动力设计问题的频率补偿PINN
Frequency-compensated PINNs for Fluid-dynamic Design Problems
论文作者
论文摘要
圆柱体周围的不可压缩流体流是与许多现实世界工程问题相关的流体动力学中的经典问题之一,例如,近海结构的设计或Pin-Fin热交换器的设计。因此,学习这个问题的高准确性代理可以证明一种新型机器学习方法的功效。在这项工作中,我们提出了一个具有物理信息的神经网络(PINN)体系结构,用于学习模拟输出与潜在的几何形状和边界条件之间的关系。除了使用基于物理的正则化项外,该建议的方法还利用基本物理学来学习一组傅立叶特征,即频率和相位偏移参数,然后使用它们来预测空间范围内的流速和压力。我们通过在范围时间间隔内预测模拟结果和新的设计条件来证明这种方法。我们的结果表明,傅立叶特征的合并可改善对时间域和设计空间的概括性能。
Incompressible fluid flow around a cylinder is one of the classical problems in fluid-dynamics with strong relevance with many real-world engineering problems, for example, design of offshore structures or design of a pin-fin heat exchanger. Thus learning a high-accuracy surrogate for this problem can demonstrate the efficacy of a novel machine learning approach. In this work, we propose a physics-informed neural network (PINN) architecture for learning the relationship between simulation output and the underlying geometry and boundary conditions. In addition to using a physics-based regularization term, the proposed approach also exploits the underlying physics to learn a set of Fourier features, i.e. frequency and phase offset parameters, and then use them for predicting flow velocity and pressure over the spatio-temporal domain. We demonstrate this approach by predicting simulation results over out of range time interval and for novel design conditions. Our results show that incorporation of Fourier features improves the generalization performance over both temporal domain and design space.