论文标题
理想气体方法的流体动力学方法
Ideal-Gas Approach to Hydrodynamics
论文作者
论文摘要
运输是所有能量和长度尺度中最重要的物理过程之一。理想的气体和流体动力学分别是运输的两个相反限制。在这里,我们提出了这两个限制之间意外的数学联系。也就是说,存在一些情况,即可以通过非相互作用的理想气体的动态来构建一类具有某些初始条件的相互作用的流体动力方程的方法。我们分析提供了三个这样的示例。前两个示例集中在规模不变的系统上,该系统将费疗化为强烈相互作用系统的流体动力学,并确定谐波陷阱中完美密度振荡的特定初始条件。第三个示例在一维bose冷凝物中恢复了深色孤子溶液。结果可以解释巴黎组对超速原子气体中最近的令人困惑的实验观察,并为将来的实验做出进一步的预测。我们设想,可以通过系统的数值搜索可以找到这种理想气体方法的广泛示例,该搜索可以在各种物理学子场中找到不同问题的广泛应用。
Transport is one of the most important physical processes in all energy and length scales. Ideal gases and hydrodynamics are, respectively, two opposite limits of transport. Here, we present an unexpected mathematical connection between these two limits; that is, there exist situations that the solution to a class of interacting hydrodynamic equations with certain initial conditions can be exactly constructed from the dynamics of noninteracting ideal gases. We analytically provide three such examples. The first two examples focus on scale-invariant systems, which generalize fermionization to the hydrodynamics of strongly interacting systems, and determine specific initial conditions for perfect density oscillations in a harmonic trap. The third example recovers the dark soliton solution in a one-dimensional Bose condensate. The results can explain a recent puzzling experimental observation in ultracold atomic gases by the Paris group and make further predictions for future experiments. We envision that extensive examples of such an ideal-gas approach to hydrodynamics can be found by systematical numerical search, which can find broad applications in different problems in various subfields of physics.