论文标题
有限集的类型B类模拟
A type B analogue of the category of finite sets with surjections
论文作者
论文摘要
我们定义了有限集类别的B型类似物,并研究了该类别的代表理论。我们表明,相反的类别是准grobner,这意味着有限生成的模块的子模块再次有限生成。我们证明,有限生成的模块的生成函数具有某些规定的极点,并且我们获得了可以出现在此类模块中的B型Coxeter组的表示的限制。我们的主要示例是一个模块,该模块分类了B型Coxeter排列的I kazhdan-lusztig系数。
We define a type B analogue of the category of finite sets with surjections, and we study the representation theory of this category. We show that the opposite category is quasi-Grobner, which implies that submodules of finitely generated modules are again finitely generated. We prove that the generating functions of finitely generated modules have certain prescribed poles, and we obtain restrictions on the representations of type B Coxeter groups that can appear in such modules. Our main example is a module that categorifies the degree i Kazhdan-Lusztig coefficients of type B Coxeter arrangements.