论文标题
量子自旋系统的多侧功能重新归一化组方法
Multiloop functional renormalization group approach to quantum spin systems
论文作者
论文摘要
重新归一化组方法是对相关量子多体系统低能特性(数值)研究(数值)研究的良好工具,从而可以捕获其规模依赖性的性质。功能重新归一化组(FRG)允许将微观模型的作用连续发展为有效的低能作用,这是通过精确的功能流程方程减少能量尺度的函数,然后通过某些截断方案近似以促进计算。在这里,我们报告了我们最近开发的电子FRG计算的多列截断方法的转录,用于相互作用的量子自旋系统,用于伪用力的功能重新归一化组(PF-FRG)。我们详细讨论了由MultiLoop截断产生的流程方程的概念复杂性,以及对所得整数差异方程的集成方案的基本改进。为了基准我们的方法,我们分析了pyrochlore,简单的立方体和以面部为中心的立方晶格上的抗磁性海森堡模型,讨论了物理可观察物的收敛性,以进行更高环计算,并与现有结果进行比较。这些方法学改进合并在探索较高空间维度的沮丧的量子磁力时,系统地改善了PFRG的方法之一。
Renormalization group methods are well-established tools for the (numerical) investigation of the low-energy properties of correlated quantum many-body systems, allowing to capture their scale-dependent nature. The functional renormalization group (FRG) allows to continuously evolve a microscopic model action to an effective low-energy action as a function of decreasing energy scales via an exact functional flow equation, which is then approximated by some truncation scheme to facilitate computation. Here, we report on our transcription of a recently developed multiloop truncation approach for electronic FRG calculations to the pseudo-fermion functional renormalization group (pf-FRG) for interacting quantum spin systems. We discuss in detail the conceptual intricacies of the flow equations generated by the multiloop truncation, as well as essential refinements to the integration scheme for the resulting integro-differential equations. To benchmark our approach we analyze antiferromagnetic Heisenberg models on the pyrochlore, simple cubic and face-centered cubic lattice, discussing the convergence of physical observables for higher-loop calculations and comparing with existing results where available. Combined, these methodological refinements systematically improve the pf-FRG approach to one of the numerical tools of choice when exploring frustrated quantum magnetism in higher spatial dimensions.