论文标题
有限密度场理论中量子信息的各个方面
Aspects of quantum information in finite density field theory
论文作者
论文摘要
我们使用量子信息理论中的方法以有限密度研究量子场理论的不同方面。为简单起见,我们专注于具有非零化学势的大型狄拉克费米,并以$ 1+1 $的时空尺寸工作。在间隔上使用纠缠熵,我们构建一个有限的熵$ c $功能。与Lorentz-Invariant理论中发生的情况不同,这种$ C $功能表现出强烈的单调性。它还编码从费米表面的远程纠缠的创建。在以前的晶格模型上的启发下,我们接下来按数值计算Renyi熵并找到Friedel型振荡。这些从缺陷操作员产品扩展来理解。此外,我们将共同信息视为衡量不同区域之间相关函数的量度。使用Cardy先前开发的长距离扩张,我们认为相互信息检测到扩展中已经领先顺序的费米表面相关性。我们还分析了相对熵及其RENYI概括,以区分不同电荷和/或质量的状态。特别是,我们表明,不同超选择扇区中的状态会导致相对熵的超扩张行为。最后,我们讨论了相互作用理论的可能扩展,并主张其中某些措施探测非Fermi液体的相关性。
We study different aspects of quantum field theory at finite density using methods from quantum information theory. For simplicity we focus on massive Dirac fermions with nonzero chemical potential, and work in $1+1$ space-time dimensions. Using the entanglement entropy on an interval, we construct an entropic $c$-function that is finite. Unlike what happens in Lorentz-invariant theories, this $c$-function exhibits a strong violation of monotonicity; it also encodes the creation of long-range entanglement from the Fermi surface. Motivated by previous works on lattice models, we next calculate numerically the Renyi entropies and find Friedel-type oscillations; these are understood in terms of a defect operator product expansion. Furthermore, we consider the mutual information as a measure of correlation functions between different regions. Using a long-distance expansion previously developed by Cardy, we argue that the mutual information detects Fermi surface correlations already at leading order in the expansion. We also analyze the relative entropy and its Renyi generalizations in order to distinguish states with different charge and/or mass. In particular, we show that states in different superselection sectors give rise to a super-extensive behavior in the relative entropy. Finally, we discuss possible extensions to interacting theories, and argue for the relevance of some of these measures for probing non-Fermi liquids.