论文标题

热木星和浓缩星团的超冷土星形成

Hot Jupiter and ultra-cold Saturn formation in dense star clusters

论文作者

Wang, Yi-Han, Leigh, Nathan W. C., Perna, Rosalba, Shara, Michael M.

论文摘要

在密集的簇中发现热木星的高发病率挑战了基于现场的热木星形成理论。在密集的簇中,行星系统和飞束恒星之间的相互作用相对普遍。这对行星系统有重大影响,主导着热木星的形成。在本文中,我们对恒星飞鸟的高精度,几个体的模拟以及簇中随后的行星迁移。大型参数空间探索表明,改变行星系统结构的近距离鸟类可以激活高偏心迁移机制:利多夫 - 科泽(Lidov-kozai)和行星 - 星空散射,从而导致浓密簇中的高热木星形成率。我们的模拟预测,许多热木星都伴随着“超冷的土星”,被驱逐到数千个AU的Apastra。对于最初托管两个具有半轴轴比率$ \ sim $ 4的巨型行星的行星系统,这种增长尤其引人注目,而弗莱比恒星几乎垂直于行星轨道平面。病毒式聚类的热木星形成率的估计下限为$ \ sim 1.6 \ times10^{ - 4}(σ/{\ rm 1kms^{ - 1}}}) 1000m_ \ odot})^{ - 2} $ gyr $^{ - 1} $每颗星,其中$σ$是群集速度分散,$ a _ {\ rm p} $是行星系统的大小,$ m_ {\ rm c} $是cluster的质量。我们的仿真产生了热的木星丰度,$ \ sim是$ 50倍的$ 50倍,比旧的开放群集M67中观察到的$ 50倍。我们希望涉及二进制恒星以及第三个或更多巨型行星的互动将弥补差异。

The discovery of high incidence of hot Jupiters in dense clusters challenges the field-based hot Jupiter formation theory. In dense clusters, interactions between planetary systems and flyby stars are relatively common. This has a significant impact on planetary systems, dominating hot Jupiter formation. In this paper, we perform high precision, few-body simulations of stellar flybys and subsequent planet migration in clusters. A large parameter space exploration demonstrates that close flybys that change the architecture of the planetary system can activate high eccentricity migration mechanisms: Lidov-Kozai and planet-planet scattering, leading to high hot Jupiter formation rate in dense clusters. Our simulations predict that many of the hot Jupiters are accompanied by "ultra-cold Saturns", expelled to apastra of thousands of AU. This increase is particularly remarkable for planetary systems originally hosting two giant planets with semi-major axis ratios $\sim$ 4 and the flyby star approaching nearly perpendicular to the planetary orbital plane. The estimated lower limit to the hot Jupiter formation rate of a virialized cluster is $\sim 1.6\times10^{-4}(σ/{\rm 1kms^{-1}})^5({a_{\rm p}}/{\rm 20 AU})({M_{\rm c}}/{\rm 1000M_\odot})^{-2}$Gyr$^{-1}$ per star, where $σ$ is the cluster velocity dispersion, $a_{\rm p}$ is the size of the planetary system and $M_{\rm c}$ is the mass of the cluster. Our simulations yield a hot Jupiter abundance which is $\sim$ 50 times smaller than that observed in the old open cluster M67. We expect that interactions involving binary stars, as well as a third or more giant planets, will close the discrepancy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源