论文标题
非平稳性高斯相关的高维型矩阵的高维状态
High dimensional regimes of non-stationary Gaussian correlated Wishart matrices
论文作者
论文摘要
我们研究相关的WishArt矩阵的高维渐近方案$ d^{ - 1} \ Mathcal {y} \ Mathcal {y}^t $,其中$ \ Mathcal {y} $是a $ n \ times a $ n \ times d $ d $高斯随机矩阵,具有相关和非固定条件。我们证明,在不同的规范化下,出现了两个不同的政权,因为$ n $ and $ d $均增长到无限。第一个制度是中央融合之一,在该方案中,正确重新归一化的Wishart矩阵的定律在与高斯正交集合矩阵的Wasserstein距离中变得靠近。在第二个制度中,发生了非中心的融合,归一化的Wishart矩阵的定律在Wasserstein的距离与诺尔丁和Zheng最近引入的所谓Rosenblatt-Wishart矩阵的距离距离接近。然后,我们继续表明,上面所述的融合也存在于功能设置中,即$ c([a,b]; m_n(\ mathbb {r}))$中的弱收敛。作为我们主要结果的应用(在中央融合制度中),我们表明它可以用来证明与半圆形定律的经验频谱分布期望的预期。我们的发现补充并扩展了大量的结果,研究了高斯志愿矩阵的波动的研究,我们根据高斯条目通过双分裂或折时布朗运动的归一化增量提供了明确的例子。
We study the high-dimensional asymptotic regimes of correlated Wishart matrices $d^{-1}\mathcal{Y}\mathcal{Y}^T$, where $\mathcal{Y}$ is a $n\times d$ Gaussian random matrix with correlated and non-stationary entries. We prove that under different normalizations, two distinct regimes emerge as both $n$ and $d$ grow to infinity. The first regime is the one of central convergence, where the law of the properly renormalized Wishart matrices becomes close in Wasserstein distance to that of a Gaussian orthogonal ensemble matrix. In the second regime, a non-central convergence happens, and the law of the normalized Wishart matrices becomes close in Wasserstein distance to that of the so-called Rosenblatt-Wishart matrix recently introduced by Nourdin and Zheng. We then proceed to show that the convergences stated above also hold in a functional setting, namely as weak convergence in $C([a,b];M_n(\mathbb{R}))$. As an application of our main result (in the central convergence regime), we show that it can be used to prove convergence in expectation of the empirical spectral distributions of the Wishart matrices to the semicircular law. Our findings complement and extend a rich collection of results on the study of the fluctuations of Gaussian Wishart matrices, and we provide explicit examples based on Gaussian entries given by normalized increments of a bi-fractional or a sub-fractional Brownian motion.