论文标题
纳米磁力测定法具有硅碳化物中的硅空缺
nanoTesla magnetometry with the silicon vacancy in silicon carbide
论文作者
论文摘要
碳化硅是一种有前途的宿主材料,用于基于自旋缺损的量子传感器,由于其商业可用性以及用于电气和光学微生物设备集成的既定技术。负电荷的硅空缺是由于其接近电信的光发射,高自旋数和几乎温度独立的基态零场分裂而在碳化硅中研究的主要自旋缺陷之一。我们报告了基于光学检测到的磁共振磁共振的纳米射击弹射磁力测定法的实现,并在4H碳化硅中使用硅空缺。通过粗略优化退火参数并最大程度地扩展功率,我们达到了3.5 nt/$ \ sqrt {Hz} $的灵敏度。这是在不利用复杂的光子工程,控制协议或应用大于瓦特的激发能力的情况下完成的。这项工作表明,碳化硅中的硅空缺为磁场的量子传感提供了一种低成本和简单的方法。
Silicon Carbide is a promising host material for spin defect based quantum sensors owing to its commercial availability and established techniques for electrical and optical microfabricated device integration. The negatively charged silicon vacancy is one of the leading spin defects studied in silicon carbide owing to its near telecom photoemission, high spin number, and nearly temperature independent ground state zero field splitting. We report the realization of nanoTesla shot-noise limited ensemble magnetometry based on optically detected magnetic resonance with the silicon vacancy in 4H silicon carbide. By coarsely optimizing the anneal parameters and minimizing power broadening, we achieved a sensitivity of 3.5 nT/$\sqrt{Hz}$. This was accomplished without utilizing complex photonic engineering, control protocols, or applying excitation powers greater than a Watt. This work demonstrates that the silicon vacancy in silicon carbide provides a low-cost and simple approach to quantum sensing of magnetic fields.