论文标题
从行星胚胎和早期金星,地球和火星的贵重气体同位素的损失和分级
Loss and fractionation of noble gas isotopes and moderately volatile elements from planetary embryos and early Venus, Earth and Mars
论文作者
论文摘要
在这里,我们讨论了有关大气逃生过程如何分割贵族气体同位素和中度挥发性的岩石形成元素的当前知识状态,这些元素填充了原始大气,岩浆海洋相关的环境以及灾难性的蒸汽气氛。不同行星储层中的同位素和挥发性元件的变化保留了有关大气逃生,组成甚至吸收材料来源的信息。我们总结了我们对大气同位素比率的知识,并讨论了最新的证据表明,原始和地球捕获了小h $ _2 $区的原始大气,这些大气被EUV驱动的流体动力逃生丢失后,磁盘分散后。讨论了所有相关的热和非热气逃生过程,这些过程都可以分割各种同位素和挥发性元素。还解决了大气层侵袭者对早期气氛,地壳和地幔的侵蚀。此外,我们讨论了中度波动的元素,例如产生放射性热元素$^{40} $ K以及其他形成的岩石形成元素,例如MG,也可以从岩浆海洋中散发出来,并从岩浆海洋中丢失,这些海洋源于大行星胚胎和增强行星。超出元素从行星胚胎直接逃脱了$ \ geq $ \,m $ _ {\ rm月亮} $的质量,或者是由于逃脱的H原子的流体动力学阻力,其源自原始胚胎或蒸汽气氛,以更大的胚胎。我们讨论这些过程如何影响最终的元素组成和比率,例如早期行星的K/U,Fe/mg及其基础。最后,我们通过重现其测量的当今大气中的大气$^{36} $ ar/$^{38} $ ar,$^{20} $ ne/$ ne/$^{22} $ ne ne贵重同位素比率以及其在水上的损失及其损失的作用,从而审查了限制金星,地球和火星早期演变的建模工作,从而限制了金星,地球和火星的早期演变。
Here we discuss the current state of knowledge on how atmospheric escape processes can fractionate noble gas isotopes and moderately volatile rock-forming elements that populate primordial atmospheres, magma ocean related environments, and catastrophically outgassed steam atmospheres. Variations of isotopes and volatile elements in different planetary reservoirs keep information about atmospheric escape, composition and even the source of accreting material. We summarize our knowledge on atmospheric isotope ratios and discuss the latest evidence that proto-Venus and Earth captured small H$_2$-dominated primordial atmospheres that were lost by EUV-driven hydrodynamic escape after the disk dispersed. All relevant thermal and non-thermal atmospheric escape processes that can fractionate various isotopes and volatile elements are discussed. Erosion of early atmospheres, crust and mantle by large planetary impactors are also addressed. Further, we discuss how moderately volatile elements such as the radioactive heat producing element $^{40}$K and other rock-forming elements such as Mg can also be outgassed and lost from magma oceans that originate on large planetary embryos and accreting planets. Outgassed elements escape from planetary embryos with masses that are $\geq$\,M$_{\rm Moon}$ directly, or due to hydrodynamic drag of escaping H atoms originating from primordial- or steam atmospheres at more massive embryos. We discuss how these processes affect the final elemental composition and ratios such as K/U, Fe/Mg of early planets and their building blocks. Finally, we review modeling efforts that constrain the early evolution of Venus, Earth and Mars by reproducing their measured present day atmospheric $^{36}$Ar/$^{38}$Ar, $^{20}$Ne/$^{22}$Ne noble gas isotope ratios and the role of isotopes on the loss of water and its connection to the redox state on early Mars.