论文标题

在事件序列中学习过渡时间:基于事件的隐藏马尔可夫疾病进展模型

Learning transition times in event sequences: the Event-Based Hidden Markov Model of disease progression

论文作者

Wijeratne, Peter A., Alexander, Daniel C.

论文摘要

随着时间的流逝,进行性疾病会恶化,其特征是追踪疾病进展的特征的单调变化。在这里,我们将两种以前独立的方法(基于事件和隐藏的马尔可夫建模)连接起来,以得出一种新的疾病进展生成模型。我们的模型可以独特地推断出有限数据集的最可能的群体级序列和事件的时机(自然历史)。此外,即使缺少数据,它也可以推断和预测个体级别的轨迹(预后),从而使其具有很高的临床效用。在这里,我们得出模型并根据期望最大化算法提供推理方案。我们使用阿尔茨海默氏病神经影像计划中的临床,成像和生物流体数据来证明我们的模型的有效性和实用性。首先,我们训练我们的模型,以揭示阿尔茨海默氏病的新组级特征变化序列在$ {\ sim}时期17.3 $年。接下来,我们证明我们的模型在连续的时间内按接收器操作员特征曲线$ {\ sim} 0.23 $下的区域提供了改进的实用程序。最后,我们证明我们的模型可保持预测精度,最高$ 50 \%$丢失的数据。这些结果支持我们模型的临床有效性及其在资源有限的医疗应用中更广泛的效用。

Progressive diseases worsen over time and are characterised by monotonic change in features that track disease progression. Here we connect ideas from two formerly separate methodologies -- event-based and hidden Markov modelling -- to derive a new generative model of disease progression. Our model can uniquely infer the most likely group-level sequence and timing of events (natural history) from limited datasets. Moreover, it can infer and predict individual-level trajectories (prognosis) even when data are missing, giving it high clinical utility. Here we derive the model and provide an inference scheme based on the expectation maximisation algorithm. We use clinical, imaging and biofluid data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate the validity and utility of our model. First, we train our model to uncover a new group-level sequence of feature changes in Alzheimer's disease over a period of ${\sim}17.3$ years. Next, we demonstrate that our model provides improved utility over a continuous time hidden Markov model by area under the receiver operator characteristic curve ${\sim}0.23$. Finally, we demonstrate that our model maintains predictive accuracy with up to $50\%$ missing data. These results support the clinical validity of our model and its broader utility in resource-limited medical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源