论文标题
CHESS2VEC:学习国际象棋的向量表示
Chess2vec: Learning Vector Representations for Chess
论文作者
论文摘要
我们对同类研究进行了首次研究,以生成和评估国际象棋的矢量表示。特别是,我们发现了国际象棋和移动的潜在结构,并预测了国际象棋从国际象棋位置移动。我们分享了初步结果,这些结果预期了我们在神经网络体系结构上正在进行的工作,该神经网络体系结构直接从监督的反馈中学习了这些嵌入。
We conduct the first study of its kind to generate and evaluate vector representations for chess pieces. In particular, we uncover the latent structure of chess pieces and moves, as well as predict chess moves from chess positions. We share preliminary results which anticipate our ongoing work on a neural network architecture that learns these embeddings directly from supervised feedback.