论文标题
基于信息的分离神经网络,用于分类不同领域中看不见的类别:应用于胎儿超声成像
Mutual Information-based Disentangled Neural Networks for Classifying Unseen Categories in Different Domains: Application to Fetal Ultrasound Imaging
论文作者
论文摘要
深度神经网络在具有不同纠缠域特征和分类特征的图像之间表现出有限的概括性。学习可以在域之间形成通用分类决策边界的可通用特征是一个有趣而困难的挑战。当尝试在不同的图像采集设备,跨采集参数或某些类中无法在新的培训数据库中不可用时,尝试部署和改进深度学习模型时,此问题经常发生在医学成像应用中。为了解决这个问题,我们提出了基于信息的分离神经网络(MIDNET),这些神经网络(MIDNET)将可推广的分类特征提取以将知识转移到目标域中的看不见类别。拟议的Midnet采用半监督的学习范式来减轻对标记数据的依赖。这对于数据注释耗时,昂贵并且需要培训和专业知识的现实应用程序很重要。我们广泛评估了胎儿超声数据集上提出的方法,用于两个不同的图像分类任务,其中域特征分别由阴影伪影和图像采集设备分别定义。实验结果表明,所提出的方法的表现优于具有稀疏标记训练数据的目标域中看不见类别的最新分类。
Deep neural networks exhibit limited generalizability across images with different entangled domain features and categorical features. Learning generalizable features that can form universal categorical decision boundaries across domains is an interesting and difficult challenge. This problem occurs frequently in medical imaging applications when attempts are made to deploy and improve deep learning models across different image acquisition devices, across acquisition parameters or if some classes are unavailable in new training databases. To address this problem, we propose Mutual Information-based Disentangled Neural Networks (MIDNet), which extract generalizable categorical features to transfer knowledge to unseen categories in a target domain. The proposed MIDNet adopts a semi-supervised learning paradigm to alleviate the dependency on labeled data. This is important for real-world applications where data annotation is time-consuming, costly and requires training and expertise. We extensively evaluate the proposed method on fetal ultrasound datasets for two different image classification tasks where domain features are respectively defined by shadow artifacts and image acquisition devices. Experimental results show that the proposed method outperforms the state-of-the-art on the classification of unseen categories in a target domain with sparsely labeled training data.