论文标题
使用变换一致性损失无监督的度量重新定位
Unsupervised Metric Relocalization Using Transform Consistency Loss
论文作者
论文摘要
传统上进行度量重新定位的训练网络需要准确的图像对应关系。实际上,这些是通过限制域覆盖,采用其他传感器或捕获大型多视图数据集获得的。相反,我们提出了一种自我监督的解决方案,该解决方案利用了一个关键的见解:在地图中定位查询图像应产生相同的绝对姿势,而不论用于注册的参考图像如何。在这种直觉的指导下,我们得出了一种新颖的变换一致性损失。使用此损失函数,我们训练一个深层的神经网络来推断密集的特征和显着图,以在动态环境中执行强大的度量重新定位。我们在合成和现实世界数据上评估了框架,显示有限的基础真相信息可用时,我们的方法优于其他监督方法。
Training networks to perform metric relocalization traditionally requires accurate image correspondences. In practice, these are obtained by restricting domain coverage, employing additional sensors, or capturing large multi-view datasets. We instead propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration. Guided by this intuition, we derive a novel transform consistency loss. Using this loss function, we train a deep neural network to infer dense feature and saliency maps to perform robust metric relocalization in dynamic environments. We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.