论文标题

验证纠缠措施的要求

The verification of a requirement of entanglement measures

论文作者

Qi, Xianfei, Gao, Ting, Yan, Fengli

论文摘要

量子纠缠的量化是量子信息理论中的一个核心问题。最近,Gao \ emph {et al}。 (\ href {http://dx.doi.org/10.1103/physrevlett.112.180501} {phys。Rev.lett。声明$ρ$,并提出该论点可以用作(多部分)纠缠措施的附加要求。是否有任何个人提议的纠缠措施满足要求仍然必须证明。在这项工作中,我们表明,两部分量子系统的最著名的纠缠度量满足新标准,包括所有凸式纠缠措施,纠缠的相对熵,负性,对数的负面性和对数范围的凸孔凸出延伸性负面性。我们的结果在量化纠缠方面提供了改进,并为更好地理解量子系统的纠缠特性提供了新的见解。

The quantification of quantum entanglement is a central issue in quantum information theory. Recently, Gao \emph{et al}. ( \href{http://dx.doi.org/10.1103/PhysRevLett.112.180501}{Phys. Rev. Lett. \textbf{112}, 180501 (2014)}) pointed out that the maximum of entanglement measure of the permutational invariant part of $ρ$ ought to be a lower bound on entanglement measure of the original state $ρ$, and proposed that this argument can be used as an additional requirement for (multipartite) entanglement measures. Whether any individual proposed entanglement measure satisfies the requirement still has to prove. In this work, we show that most known entanglement measures of bipartite quantum systems satisfy the new criterion, include all convex-roof entanglement measures, the relative entropy of entanglement, the negativity, the logarithmic negativity and the logarithmic convex-roof extended negativity. Our results give a refinement in quantifying entanglement and provide new insights into a better understanding of entanglement properties of quantum systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源