论文标题

HM4:带有内存管理的隐藏马尔可夫模型,用于视觉位置识别

HM4: Hidden Markov Model with Memory Management for Visual Place Recognition

论文作者

Doan, Anh-Dzung, Latif, Yasir, Chin, Tat-Jun, Reid, Ian

论文摘要

由于自然和人为的原因,视觉位置识别需要与外观可变性保持稳定。因此,培训数据收集应该是一个持续的过程,以允许记录连续的外观变化。但是,这会创建一个无限增长的数据库,该数据库对位置识别方法提出了时间和内存可伸缩性挑战。为了解决自主驾驶中视觉位置识别的可伸缩性问题,我们使用两层内存管理开发了隐藏的马尔可夫模型方法。我们的算法被称为HM $^4 $,利用时间外观预先实现在需要时将有希望的候选图像转移到被动存储和有效内存之间。推理过程同时考虑了有希望的图像和完整数据库的粗略表示。我们表明,这允许对固定覆盖范围的持续时间和空间推断。粗略表示也可以逐步更新以吸收新数据。为了进一步降低内存需求,我们得出了受位置敏感哈希(LSH)启发的紧凑图像表示。通过对现实世界数据的实验,我们证明了在外观变化下方法的出色可扩展性和准确性,并提供了与最新技术的比较。

Visual place recognition needs to be robust against appearance variability due to natural and man-made causes. Training data collection should thus be an ongoing process to allow continuous appearance changes to be recorded. However, this creates an unboundedly-growing database that poses time and memory scalability challenges for place recognition methods. To tackle the scalability issue for visual place recognition in autonomous driving, we develop a Hidden Markov Model approach with a two-tiered memory management. Our algorithm, dubbed HM$^4$, exploits temporal look-ahead to transfer promising candidate images between passive storage and active memory when needed. The inference process takes into account both promising images and a coarse representations of the full database. We show that this allows constant time and space inference for a fixed coverage area. The coarse representations can also be updated incrementally to absorb new data. To further reduce the memory requirements, we derive a compact image representation inspired by Locality Sensitive Hashing (LSH). Through experiments on real world data, we demonstrate the excellent scalability and accuracy of the approach under appearance changes and provide comparisons against state-of-the-art techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源