论文标题
AutoAudit:采矿会计和时间不断发展的图表
AutoAudit: Mining Accounting and Time-Evolving Graphs
论文作者
论文摘要
我们如何在类似图形的会计数据集中发现洗钱?如何在随着时间的推移会计图中确定最可疑的时期?在时间限制下,从业者应优先考虑哪些帐户和事件?为了应对会计和审计任务中的这些至关重要的挑战,我们提出了一个名为AutoAudit的灵活系统,这对于审计师和风险管理专业人员来说可能很有价值。总而言之,该系统有四个主要优势:(a)“蓝精灵”检测,将近100%的注射洗钱交易量自动在现实世界数据集中自动。 (b)注意路线,参与时间不断发展的图表中最可疑的部分,并提供直观的解释。 (c)洞察发现,确定“成功故事”证明的类似的月对模式,以及按照对数尺度中的力量定律所证明的。 (d)可伸缩性和通用性,确保自动审计量表线性缩放,并可以轻松地扩展到其他现实世界图数据集。各种现实世界数据集的实验说明了我们方法的有效性。为了促进可重复性和可访问性,我们在https://github.com/mengchillee/autoaudit上公开代码,图形和结果。
How can we spot money laundering in large-scale graph-like accounting datasets? How to identify the most suspicious period in a time-evolving accounting graph? What kind of accounts and events should practitioners prioritize under time constraints? To tackle these crucial challenges in accounting and auditing tasks, we propose a flexible system called AutoAudit, which can be valuable for auditors and risk management professionals. To sum up, there are four major advantages of the proposed system: (a) "Smurfing" Detection, spots nearly 100% of injected money laundering transactions automatically in real-world datasets. (b) Attention Routing, attends to the most suspicious part of time-evolving graphs and provides an intuitive interpretation. (c) Insight Discovery, identifies similar month-pair patterns proved by "success stories" and patterns following Power Laws in log-logistic scales. (d) Scalability and Generality, ensures AutoAudit scales linearly and can be easily extended to other real-world graph datasets. Experiments on various real-world datasets illustrate the effectiveness of our method. To facilitate reproducibility and accessibility, we make the code, figure, and results public at https://github.com/mengchillee/AutoAudit.