论文标题
未来感知的多种趋势框架推荐
Future-Aware Diverse Trends Framework for Recommendation
论文作者
论文摘要
在推荐系统中,对用户计算行为进行建模对于用户表示学习至关重要。现有的顺序推荐器考虑历史上相互作用的项目之间的顺序相关性,以捕获用户的历史偏好。但是,由于用户的偏好本质上是随着时间的推移和多元化的方式,因此仅对历史偏好进行建模(不知道随时间不断发展的偏好趋势)可能会因推荐互补或新鲜物品而劣等,从而损害了建议系统的有效性。在本文中,我们通过提出未来感知到的多种趋势(FAT)框架来弥合过去偏好与潜在的未来偏好之间的差距。通过未来感知,对于每个检查的用户,我们根据提出的邻居行为提取器构建了其他相似用户的未来序列,这些序列由检查用户的最后一个行为发生后发生的行为。通过不同的趋势,假设未来的偏好可以多样化,我们提出了各种趋势提取器和时间感知机制,以代表具有多个向量的给定用户的偏好趋势。我们利用历史偏好的表示以及可能的未来趋势来获得最终建议。现实世界数据集中相对广泛的实验的定量和定性结果表明,所提出的框架不仅胜过各种指标的最新顺序推荐方法,而且还提出了互补和新的建议。
In recommender systems, modeling user-item behaviors is essential for user representation learning. Existing sequential recommenders consider the sequential correlations between historically interacted items for capturing users' historical preferences. However, since users' preferences are by nature time-evolving and diversified, solely modeling the historical preference (without being aware of the time-evolving trends of preferences) can be inferior for recommending complementary or fresh items and thus hurt the effectiveness of recommender systems. In this paper, we bridge the gap between the past preference and potential future preference by proposing the future-aware diverse trends (FAT) framework. By future-aware, for each inspected user, we construct the future sequences from other similar users, which comprise of behaviors that happen after the last behavior of the inspected user, based on a proposed neighbor behavior extractor. By diverse trends, supposing the future preferences can be diversified, we propose the diverse trends extractor and the time-aware mechanism to represent the possible trends of preferences for a given user with multiple vectors. We leverage both the representations of historical preference and possible future trends to obtain the final recommendation. The quantitative and qualitative results from relatively extensive experiments on real-world datasets demonstrate the proposed framework not only outperforms the state-of-the-art sequential recommendation methods across various metrics, but also makes complementary and fresh recommendations.