论文标题
镜头和对称对象的姿势估计
Pose Estimation of Specular and Symmetrical Objects
论文作者
论文摘要
在机器人行业中,镜面和无纹理的金属组件无处不在。由于缺乏丰富的纹理特征,很难对仅具有单眼RGB相机的6D姿势估算此类物体。此外,镜面的外观在很大程度上取决于相机的观点和环境光条件,制造了传统方法,例如模板匹配,失败。在过去的30年中,镜头对象的姿势估计是一个一致的挑战,大多数相关的作品都需要为光设置,环境或对象表面进行大量知识建模工作。另一方面,最近的作品在具有卷积神经网络(CNN)的单眼相机上表现出6D姿势估计的可行性,但是它们主要使用不透明的对象进行评估。本文提供了一个数据驱动的解决方案,以估计镜面对象的6D姿势,以掌握它们,提出了处理对称性的成本函数,并展示了显示系统可行性的实验结果。
In the robotic industry, specular and textureless metallic components are ubiquitous. The 6D pose estimation of such objects with only a monocular RGB camera is difficult because of the absence of rich texture features. Furthermore, the appearance of specularity heavily depends on the camera viewpoint and environmental light conditions making traditional methods, like template matching, fail. In the last 30 years, pose estimation of the specular object has been a consistent challenge, and most related works require massive knowledge modeling effort for light setups, environment, or the object surface. On the other hand, recent works exhibit the feasibility of 6D pose estimation on a monocular camera with convolutional neural networks(CNNs) however they mostly use opaque objects for evaluation. This paper provides a data-driven solution to estimate the 6D pose of specular objects for grasping them, proposes a cost function for handling symmetry, and demonstrates experimental results showing the system's feasibility.