论文标题

包含有限诱导长度的有限诱导路径的图

Graphs containing finite induced paths of unbounded length

论文作者

Pouzet, Maurice, Zaguia, Imed

论文摘要

图$ g $的年龄$ \ MATHCAL {a}(g)$(无方向性且无环)是有限诱导的$ g $的收集,被认为是同构的,并通过嵌入性订购。如果不包含无限的抗抗,它是该顺序的序列序列(WQO)。图形为\ emph {path-minimal},如果它包含有限的诱发长度的路径,并且此属性嵌入了$ g $的每个引起的子图$ g'$。我们构造$ 2^{\ aleph_0} $路径最小图,其年龄与SET包含和WQO成对无与伦比。我们的构建基于标记图的均匀复发序列和词典图。

The age $\mathcal{A}(G)$ of a graph $G$ (undirected and without loops) is the collection of finite induced subgraphs of $G$, considered up to isomorphy and ordered by embeddability. It is well-quasi-ordered (wqo) for this order if it contains no infinite antichain. A graph is \emph{path-minimal} if it contains finite induced paths of unbounded length and every induced subgraph $G'$ with this property embeds $G$. We construct $2^{\aleph_0}$ path-minimal graphs whose ages are pairwise incomparable with set inclusion and which are wqo. Our construction is based on uniformly recurrent sequences and lexicographical sums of labelled graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源