论文标题
基于量子异常效应的非易失性低温随机记忆
A Non-Volatile Cryogenic Random-Access Memory Based on the Quantum Anomalous Hall Effect
论文作者
论文摘要
电子带结构的铁磁学和拓扑特性之间的相互作用导致对没有任何外部磁场的霍尔电阻进行精确量化。这种所谓的量子异常霍尔效应(qahe)源于拓扑相关性,并且忽略了低样本的质量。它设想导致无耗散和拓扑保护的电子设备。但是,没有明确的框架如何从中设计这样的电子设备。在这里,我们构建了一种超低的力量,非挥发性的低温记忆结构利用了Qahe现象。我们的设计承诺与最先进的低温记忆技术相比,细胞区域的数量级要低。我们利用Moiré石墨烯异质结构中量化的大厅电阻水平存储非挥发性二进制位(1,0)。我们使用相反极性的纳米 - 安培水平电流在量化的大厅状态之间通过受控的滞后切换执行记忆写操作。通过使用单独的端子对横向霍尔电压的极性来执行非破坏性读取操作。我们使用一种新颖的感应机制来定制内存体系结构,以避免意外数据损坏,确保最高记忆密度并最大程度地减少阵列泄漏功率。我们的设计可将其转移到展示QAHE的任何材料平台,并为实现拓扑保护的内存设备提供了途径。
The interplay between ferromagnetism and topological properties of electronic band structures leads to a precise quantization of Hall resistance without any external magnetic field. This so-called quantum anomalous Hall effect (QAHE) is born out of topological correlations, and is oblivious of low-sample quality. It was envisioned to lead towards dissipationless and topologically protected electronics. However, no clear framework of how to design such an electronic device out of it exists. Here we construct an ultra-low power, non-volatile, cryogenic memory architecture leveraging the QAHE phenomenon. Our design promises orders of magnitude lower cell area compared with the state-of-the-art cryogenic memory technologies. We harness the fundamentally quantized Hall resistance levels in moiré graphene heterostructures to store non-volatile binary bits (1, 0). We perform the memory write operation through controlled hysteretic switching between the quantized Hall states, using nano-ampere level currents with opposite polarities. The non-destructive read operation is performed by sensing the polarity of the transverse Hall voltage using a separate pair of terminals. We custom design the memory architecture with a novel sensing mechanism to avoid accidental data corruption, ensure highest memory density and minimize array leakage power. Our design is transferrable to any material platform exhibiting QAHE, and provides a pathway towards realizing topologically protected memory devices.