论文标题

像素级循环协会:域自适应语义分割的新观点

Pixel-Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

论文作者

Kang, Guoliang, Wei, Yunchao, Yang, Yi, Zhuang, Yueting, Hauptmann, Alexander G.

论文摘要

域自适应语义分割旨在训练仅使用室外(源)注释对目标进行令人满意的像素级预测的模型。该任务的常规解决方案是最大程度地减少源和目标之间的差异,以实现有效的知识转移。以前的域差异最小化方法主要基于对抗性训练。他们倾向于在全球范围内考虑域差异,这些域忽略了像素的关系,并且歧视性较小。在本文中,我们建议在源和目标像素对之间建立像素级循环的关联,并对比增强其连接以减少域间隙并使特征更具歧视性。据我们所知,这是解决这一艰巨的任务的新观点。实验结果对两个代表性的域适应基准测试,即gtav $ \ rightarrow $ cityScapes和synthia $ \ rightarrow $ cityScapes,验证我们提出的方法的有效性,并证明我们的方法对以前的先前最先前的艺术品有利地执行。我们的方法可以在一个阶段进行端到端训练,并且没有引入其他参数,该参数预计将作为一般框架,并有助于缓解域自适应语义细分的未来研究。代码可从https://github.com/kgl-prml/pixel- callecy-cycle-association获得。

Domain adaptive semantic segmentation aims to train a model performing satisfactory pixel-level predictions on the target with only out-of-domain (source) annotations. The conventional solution to this task is to minimize the discrepancy between source and target to enable effective knowledge transfer. Previous domain discrepancy minimization methods are mainly based on the adversarial training. They tend to consider the domain discrepancy globally, which ignore the pixel-wise relationships and are less discriminative. In this paper, we propose to build the pixel-level cycle association between source and target pixel pairs and contrastively strengthen their connections to diminish the domain gap and make the features more discriminative. To the best of our knowledge, this is a new perspective for tackling such a challenging task. Experiment results on two representative domain adaptation benchmarks, i.e. GTAV $\rightarrow$ Cityscapes and SYNTHIA $\rightarrow$ Cityscapes, verify the effectiveness of our proposed method and demonstrate that our method performs favorably against previous state-of-the-arts. Our method can be trained end-to-end in one stage and introduces no additional parameters, which is expected to serve as a general framework and help ease future research in domain adaptive semantic segmentation. Code is available at https://github.com/kgl-prml/Pixel- Level-Cycle-Association.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源