论文标题
关于傅立叶乘数的增长
On the growth of Fourier multipliers
论文作者
论文摘要
我们在本地紧凑的$ g $的傅立叶代数$ a(g)$中定义了一系列功能,即驯服的削减,可满足某些融合和增长条件。这种新的考虑使我们能够给一个团队,承认傅立叶乘数并非完全有限。此外,我们表明感应地图$ mA(γ)\ rightarrow ma(g)$并不总是连续的。我们还展示了Liao的属性$(t_ {schur},g,k)$反对驯服。提供了一些示例。
We define a sequence of functions, namely tame cuts, in the Fourier algebra $A(G)$ of a locally compact group $G$, that satisfies certain convergence and growth conditions. This new consideration allows us to give a group admitting a Fourier multiplier that is not completely bounded. Furthermore, we show that the induction map $MA(Γ)\rightarrow MA(G)$ is not always continuous. We also show how Liao's Property $(T_{Schur}, G, K)$ opposes tame cuts. Some examples are provided.