论文标题

高度较高维度的有效量子门传送

Efficient quantum gate teleportation in higher dimensions

论文作者

de Silva, Nadish

论文摘要

Clifford层次结构是嵌套序列的一组量子门的序列,对于实现易受断层量子计算至关重要。克利福德层次结构和“几乎对角线”半克利福德门的对角门特别重要:他们承认具有有效的门传送协议,这些协议以较少的辅助量子资源(如魔术状态)实施了这些门,例如魔术状态。尽管这些大门具有实际的重要性,但关于它们的结构的许多问题仍然开放。在高维Qudit设置中尤其如此。我们的贡献是利用离散的石像Neumann定理以及Qudit稳定器力学的象征性形式主义来扩展Zeng-Cheng-Chuang(2008)和Beigi-Shor(2010)的结果,以统一的方式扩展到更高的维度。我们进一步提供了一种简单的算法,用于递归列举Clifford层次结构的所有大门,一种简单的算法,用于识别和对角度化的半裂口门,并简要证明了由于cui-Gottesman-Krishna(2016(2016),对角色Clifford clifford clifford clifford hieratarchy Gates的分类证明我们将半克利福德门的有效门传送协议推广到QUDIT设置,并证明一个Qudit的每个第三级门(任何素数)和两个Qutrits的每个第三级门都可以有效地实现。通过上述算法收集的数值证据支持了可以有效实施高级门的猜想。

The Clifford hierarchy is a nested sequence of sets of quantum gates critical to achieving fault-tolerant quantum computation. Diagonal gates of the Clifford hierarchy and 'nearly diagonal' semi-Clifford gates are particularly important: they admit efficient gate teleportation protocols that implement these gates with fewer ancillary quantum resources such as magic states. Despite the practical importance of these sets of gates, many questions about their structure remain open; this is especially true in the higher-dimensional qudit setting. Our contribution is to leverage the discrete Stone-von Neumann theorem and the symplectic formalism of qudit stabiliser mechanics towards extending results of Zeng-Cheng-Chuang (2008) and Beigi-Shor (2010) to higher dimensions in a uniform manner. We further give a simple algorithm for recursively enumerating all gates of the Clifford hierarchy, a simple algorithm for recognising and diagonalising semi-Clifford gates, and a concise proof of the classification of the diagonal Clifford hierarchy gates due to Cui-Gottesman-Krishna (2016) for the single-qudit case. We generalise the efficient gate teleportation protocols of semi-Clifford gates to the qudit setting and prove that every third level gate of one qudit (of any prime dimension) and of two qutrits can be implemented efficiently. Numerical evidence gathered via the aforementioned algorithms support the conjecture that higher-level gates can be implemented efficiently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源