论文标题

亚氧化物分子梁外延对Ga2O3的吸附控制生长

Adsorption-Controlled Growth of Ga2O3 by Suboxide Molecular-Beam Epitaxy

论文作者

Vogt, Patrick, Hensling, Felix V. E., Azizie, Kathy, Chang, Celesta S., Turner, David, Park, Jisung, McCandless, Jonathan P., Paik, Hanjong, Bocklund, Brandon J., Hoffman, Georg, Bierwagen, Oliver, Jena, Debdeep, Xing, Huili G., Mou, Shin, Muller, David A., Shang, Shun-Li, Liu, Zi-Kui, Schlom, Darrell G.

论文摘要

本文介绍了一种生长方法 - 氧化亚氧化物分子梁外延(S-MBE)---在吸附型康复方面,以每小时超过每小时1微米的生长速率以超过每小时1微米的生长速率增长了GA2O3和相关材料。我们将GA + GA2O3混合物与X(O)= 0.4的氧摩尔分数作为MBE源,我们克服了以前曾阻碍MBE吸附控制的GA2O3的生长的动力学极限。对于具有前所未有的晶体质量的GA2O3-AL2O3异质结构,我们的增长率每小时高达1.6微米,并且在这种完美水平的无与伦比的低生长温度下。我们结合了如何创建靶向亚氧化物分子束的热力学知识与为IIII-VI化合物S-MBE开发的动力学模型,以识别适当的生长条件。使用S-MBE,我们证明了比4微米厚的相纯度,光滑和高纯度同型GA2O3膜的生长。随着S-MBE的高增长率,我们预计基于垂直GA2O3的设备会有显着改善。我们描述并证明了如何将这种生长方法应用于大范围的氧化物。 S-MBE竞争对手主要用于生产基于GA2O3的设备的领先合成方法。

This paper introduces a growth method---suboxide molecular-beam epitaxy (S-MBE)---which enables the growth of Ga2O3 and related materials at growth rates exceeding 1 micrometer per hours with excellent crystallinity in an adsorptioncontrolled regime. Using a Ga + Ga2O3 mixture with an oxygen mole fraction of x(O) = 0.4 as an MBE source, we overcome kinetic limits that had previously hampered the adsorption-controlled growth of Ga2O3 by MBE. We present growth rates up to 1.6 micrometer per hour for Ga2O3--Al2O3 heterostructures with unprecedented crystalline quality and also at unparalleled low growth temperature for this level of perfection. We combine thermodynamic knowledge of how to create molecular-beams of targeted suboxides with a kinetic model developed for the S-MBE of III-VI compounds to identify appropriate growth conditions. Using S-MBE we demonstrate the growth of phase-pure, smooth, and high-purity homoepitaxial Ga2O3 films that are thicker than 4 micrometer. With the high growth rate of S-MBE we anticipate a significant improvement to vertical Ga2O3-based devices. We describe and demonstrate how this growth method can be applied to a wide-range of oxides. S-MBE rivals leading synthesis methods currently used for the production of Ga2O3-based devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源