论文标题

关于复杂动力学系统的稀疏识别:发现化学反应网络中有影响力反应的研究

On sparse identification of complex dynamical systems: A study on discovering influential reactions in chemical reaction networks

论文作者

Harirchi, Farshad, Kim, Doohyun, Khalil, Omar, Liu, Sijia, Elvati, Paolo, Baranwal, Mayank, Hero, Alfred, Violi, Angela

论文摘要

多种现实生活中的复杂网络对于建模,分析和控制非常大。了解此类网络的结构和动力学需要创建一个较小的代表网络,以保留其相关的拓扑和动力学属性。尽管现代的机器学习方法已允许确定复杂动力系统的管理法律,但它们无法生产具有足够物理解释的白色盒子模型,因此域专家不受欢迎。在本文中,我们介绍了一种混合黑盒,白色框方法,用于使用数据驱动的稀疏学习技术来稀疏地识别用于复杂的,高度耦合的动态系统的管理定律,特别强调用于燃烧应用中的化学反应网络中的影响反应。所提出的方法使用物种浓度和反应速率确定了一组有影响力的反应,而计算成本最小,而无需其他数据或模拟。新方法用于分析恒定量均匀反应器中H2和C3H8的燃烧化学。通过稀疏学习方法确定的影响反应与当前的化学机制知识一致。此外,我们表明,父母机制的减少版本可以作为在不同时间和条件下明显减少的影响反应的组合,并且对于H2和C3H8燃料,降低的机制在很大范围内的点火延迟时间都与父机制紧密相关。我们的结果表明,稀疏学习方法是动态系统分析和还原的有效工具的潜力。适用于燃烧系统的这种方法的独特性在于能够在燃烧过程演变中识别指定条件和时间中有影响力的反应的能力。理解化学反应系统的能力引起了极大的兴趣。

A wide variety of real life complex networks are prohibitively large for modeling, analysis and control. Understanding the structure and dynamics of such networks entails creating a smaller representative network that preserves its relevant topological and dynamical properties. While modern machine learning methods have enabled identification of governing laws for complex dynamical systems, their inability to produce white-box models with sufficient physical interpretation renders such methods undesirable to domain experts. In this paper, we introduce a hybrid black-box, white-box approach for the sparse identification of the governing laws for complex, highly coupled dynamical systems with particular emphasis on finding the influential reactions in chemical reaction networks for combustion applications, using a data-driven sparse-learning technique. The proposed approach identifies a set of influential reactions using species concentrations and reaction rates,with minimal computational cost without requiring additional data or simulations. The new approach is applied to analyze the combustion chemistry of H2 and C3H8 in a constant-volume homogeneous reactor. The influential reactions determined by the sparse-learning method are consistent with the current kinetics knowledge of chemical mechanisms. Additionally, we show that a reduced version of the parent mechanism can be generated as a combination of the significantly reduced influential reactions identified at different times and conditions and that for both H2 and C3H8 fuel, the reduced mechanisms perform closely to the parent mechanisms as a function of the ignition delay time over a wide range of conditions. Our results demonstrate the potential of the sparse-learning approach as an effective and efficient tool for dynamical system analysis and reduction. The uniqueness of this approach as applied to combustion systems lies in the ability to identify influential reactions in specified conditions and times during the evolution of the combustion process. This ability is of great interest to understand chemical reaction systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源