论文标题
主题保护合成新闻:一种对抗性深入强化学习方法
Topic-Preserving Synthetic News Generation: An Adversarial Deep Reinforcement Learning Approach
论文作者
论文摘要
如今,存在强大的语言模型,例如OpenAI的GPT-2,可以生成可读的文本,并且可以进行微调以生成特定域的文本。考虑到GPT-2,它不能直接就给定主题产生合成新闻,并且语言模型的输出无法明确控制。在本文中,我们研究了提供主题的合成新闻的新问题。我们提出了一种基于深厚的增强学习方法,以控制GPT-2相对于给定的新闻主题的输出。当使用GPT-2生成文本时,默认情况下,最可能的单词是从词汇中选择的。 RL代理并没有从GPT-2输出中选择最佳单词,而是尝试选择优化给定主题匹配的单词。此外,使用假新闻探测器作为对手,我们还使用我们提出的方法研究了生成现实的新闻。在本文中,我们将现实的新闻视为新闻的新闻,而假新闻分类器无法轻易检测到。实验结果证明了所提出的框架在生成主题的新闻内容上的有效性,而不是最先进的基线。
Nowadays, there exist powerful language models such as OpenAI's GPT-2 that can generate readable text and can be fine-tuned to generate text for a specific domain. Considering GPT-2, it cannot directly generate synthetic news with respect to a given topic and the output of the language model cannot be explicitly controlled. In this paper, we study the novel problem of topic-preserving synthetic news generation. We propose a novel deep reinforcement learning-based method to control the output of GPT-2 with respect to a given news topic. When generating text using GPT-2, by default, the most probable word is selected from the vocabulary. Instead of selecting the best word each time from GPT-2's output, an RL agent tries to select words that optimize the matching of a given topic. In addition, using a fake news detector as an adversary, we investigate generating realistic news using our proposed method. In this paper, we consider realistic news as news that cannot be easily detected by a fake news classifier. Experimental results demonstrate the effectiveness of the proposed framework on generating topic-preserving news content than state-of-the-art baselines.