论文标题
Hessian of Hausdorff dimension纯粹是虚构的方向
Hessian of Hausdorff dimension on purely imaginary directions
论文作者
论文摘要
我们将Bridgeman-Taylor和McMullen的经典结果扩展到了准河口空间上的Hausdorff Dimensian的Hessian上,以(1,1,1,2)-HyperConvex表示,Arxiv中介绍的课程:1902.01303介绍的课程,其中包括Hitchin表示的小型复杂形式的小型复杂形式和$ ch $θ$ -cosise $ -possive。我们还证明,当包含$γ\ po(n,1)\ to pu(n,1)$的Hausdorff尺寸的Hessian设置的限制限制的限制限制是积极的,当$γ$在$ po(n,1)$中共同处理时(除非$ n = 2 $,否则将变形与$ \ nath $ \ nath Formormation comprantiand po(n = 2 $)。
We extend classical results of Bridgeman-Taylor and McMullen on the Hessian of the Hausdorff dimension on quasi-Fuchsian space to the class of (1,1,2)-hyperconvex representations, a class introduced in arXiv:1902.01303 which includes small complex deformations of Hitchin representations and of $Θ$-positive representations. We also prove that the Hessian of the Hausdorff dimension of the limit set at the inclusion $Γ\to PO(n,1) \to PU(n,1)$ is positive definite when $Γ$ is co-compact in $PO(n,1)$ (unless $n=2$ and the deformation is tangent to $\mathfrak{X}(Γ,PO(2,1))).$