论文标题
五十三的五角定理和库奇引理的概括
The pentagonal theorem of sixty-three and generalizations of Cauchy's lemma
论文作者
论文摘要
在本文中,我们将整数作为五边形数字的总和研究,其中五角数是$ p_5(x)= \ frac {3x^2-x} {2-x} {2} {2} $的整数。特别是,我们证明了“五角形定理$ 63 $”,它指出,五角大数字总数代表每个非负整数,并且仅当它代表整数$ 1 $ 1 $,$ 2 $,$ 3 $,$ 4 $,$ 6 $,$ 6 $,$ 7 $,$ 8 $,$ 8 $,$ 9 $,$,$ 13 $,$,$ 13,$,$ 14,$,14美元,14 $,14 $,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元,$,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元,14美元$ 28 $,$ 31 $,$ 33 $,$ 34 $,$ 39 $,$ 42 $和$ 63 $。我们还介绍了一种通过第四纪二次形式的二进制积分二次形式的表示,以获取Cauchy的引理的广义版本,该形式在证明结果中起着至关重要的作用。
In this article, we study the representability of integers as sums of pentagonal numbers, where a pentagonal number is an integer of the form $P_5(x)=\frac{3x^2-x}{2}$ for some non-negative integer $x$. In particular, we prove the "pentagonal theorem of $63$", which states that a sum of pentagonal numbers represents every non-negative integer if and only if it represents the integers $1$, $2$, $3$, $4$, $6$, $7$, $8$, $9$, $11$, $13$, $14$, $17$, $18$, $19$, $23$, $28$, $31$, $33$, $34$, $39$, $42$, and $63$. We also introduce a method to obtain a generalized version of Cauchy's lemma using representations of binary integral quadratic forms by quaternary quadratic forms, which plays a crucial role in proving the results.