论文标题

桥接文本和知识,并具有多型嵌入的多型嵌入

Bridging Text and Knowledge with Multi-Prototype Embedding for Few-Shot Relational Triple Extraction

论文作者

Yu, Haiyang, Zhang, Ningyu, Deng, Shumin, Ye, Hongbin, Zhang, Wei, Chen, Huajun

论文摘要

当前有监督的关系三重提取方法需要大量的标记数据,因此在几个射击设置中的性能差。但是,人们可以通过学习一些实例来掌握新知识。为此,我们迈出了第一步来研究几杆的关系三重提取,但尚未得到充分理解。与以前的单个任务几个问题不同,关系三重提取更具挑战性,因为实体和关系具有隐式相关性。在本文中,我们提出了一种新型的多型嵌入网络模型,以共同提取关系三元组的组成,即实体对和相应的关系。要具体而言,我们设计了一种混合原型学习机制,该机制桥接了有关实体和关系的文本和知识。因此,注入实体与关系之间的隐式相关性。此外,我们提出了一种原型感知的正则化,以学习更多代表性的原型。实验结果表明,所提出的方法可以提高几杆三重提取的性能。

Current supervised relational triple extraction approaches require huge amounts of labeled data and thus suffer from poor performance in few-shot settings. However, people can grasp new knowledge by learning a few instances. To this end, we take the first step to study the few-shot relational triple extraction, which has not been well understood. Unlike previous single-task few-shot problems, relational triple extraction is more challenging as the entities and relations have implicit correlations. In this paper, We propose a novel multi-prototype embedding network model to jointly extract the composition of relational triples, namely, entity pairs and corresponding relations. To be specific, we design a hybrid prototypical learning mechanism that bridges text and knowledge concerning both entities and relations. Thus, implicit correlations between entities and relations are injected. Additionally, we propose a prototype-aware regularization to learn more representative prototypes. Experimental results demonstrate that the proposed method can improve the performance of the few-shot triple extraction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源