论文标题
在基本的基础上扩展甲酸对称麦克唐纳多项式
Expanding the quasisymmetric Macdonald polynomials in the fundamental basis
论文作者
论文摘要
Quasisymmectic Macdonald多项式$G_γ(X; Q,T)$最近是由[3]中的第一和第二作者与Haglund,Mason和Williams一起提出的,以优化对称的MacDonald polynomials $p_p_λ(x; q,x; q,t)$ g_g_γ(x $ qs $ qs $ qs; 0) [9]的Schur多项式。我们在验证函数的基本基础上得出了$g_γ(x; q,t)$的扩展。
The quasisymmetic Macdonald polynomials $G_γ(X; q, t)$ were recently introduced by the first and second authors with Haglund, Mason, and Williams in [3] to refine the symmetric Macdonald polynomials $P_λ(X; q, t)$ with the property that $G_γ(X; 0, 0)$ equals $QS_γ(X)$, the quasisymmetric Schur polynomial of [9]. We derive an expansion for $G_γ(X; q, t)$ in the fundamental basis of quasisymmetric functions.