论文标题

高斯过程的前景减法和功率谱估计21 cm宇宙学

Gaussian Process Foreground Subtraction and Power Spectrum Estimation for 21 cm Cosmology

论文作者

Kern, Nicholas, Liu, Adrian

论文摘要

在电离时代(EOR)时,实现21 cm强度映射的科学潜力的主要挑战之一是天体物理前景污染的分离。最近的作品声称,高斯工艺回归(GPR)可以牢固地执行这种分离,尤其是在低傅立叶$ k $ waveNumbers,信号达到其峰值信噪比。我们通过将GPR前景减法(GPR-F)施加到二次估计量形式主义中,从而将其统计特性置于更强的理论基础上,从而重新审视该主题。我们发现GPR-FS可以在这些低K模式下扭曲窗口函数,而在没有正确的去相关的情况下,很难探测EOR功率谱。顺便说一句,我们还表明,GPR-FS实际上与所研究的最佳二次估计量密切相关。作为一个案例研究,我们研究了使用GPR-F的低频阵列(Lofar)的最新功率上限。我们密切关注他们的标准化方案,表明当EOR协方差误解时,它对信号损失特别敏感。这意味着可能对洛法限制的最新天体物理解释产生了影响,因为排除的许多EOR模型不在Lofar探索的协方差模型的范围之内。对这种偏见更加强大(尽管并非完全没有),我们得出结论,二次估计器是实施GPR-FS和计算21 cm功率谱的更自然的框架。

One of the primary challenges in enabling the scientific potential of 21 cm intensity mapping at the Epoch of Reionization (EoR) is the separation of astrophysical foreground contamination. Recent works have claimed that Gaussian process regression (GPR) can robustly perform this separation, particularly at low Fourier $k$ wavenumbers where the signal reaches its peak signal-to-noise ratio. We revisit this topic by casting GPR foreground subtraction (GPR-FS) into the quadratic estimator formalism, thereby putting its statistical properties on stronger theoretical footing. We find that GPR-FS can distort the window functions at these low k modes, which, without proper decorrelation, make it difficult to probe the EoR power spectrum. Incidentally, we also show that GPR-FS is in fact closely related to the widely studied optimal quadratic estimator. As a case study, we look at recent power spectrum upper limits from the Low Frequency Array (LOFAR) that utilized GPR-FS. We pay close attention to their normalization scheme, showing that it is particularly sensitive to signal loss when the EoR covariance is misestimated. This implies possible ramifications for recent astrophysical interpretations of the LOFAR limits, because many of the EoR models ruled out do not fall within the bounds of the covariance models explored by LOFAR. Being more robust to this bias (although not entirely free of it), we conclude that the quadratic estimator is a more natural framework for implementing GPR-FS and computing the 21 cm power spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源