论文标题

感知事项:探索gan生成的假脸图像检测的不可察觉和可转移的抗福质。

Perception Matters: Exploring Imperceptible and Transferable Anti-forensics for GAN-generated Fake Face Imagery Detection

论文作者

Wang, Yongwei, Ding, Xin, Ding, Li, Ward, Rabab, Wang, Z. Jane

论文摘要

最近,生成的对抗网络(gans)可以产生光真实的假面部图像,这些面部图像在感知上与真实的面部照片无法区分,从而促进了假脸检测的研究。尽管假脸部取证可以达到高检测精度,但其抗法医学对应物的研究较少。在这里,我们探索了更多\ textit {不可感知}和\ textit {可转移}基于对抗性攻击的假面图像检测的反福音。由于面部和背景区域通常是光滑的,因此即使是小扰动也可能导致虚假图像中明显的感知障碍。因此,它使现有的对抗性攻击无效,作为一种抗飞敏方法。我们的扰动分析揭示了直接应用现有攻击时感知性退化问题的直观原因。然后,我们提出了一种新颖的对抗攻击方法,可以通过考虑视觉感知在转化的颜色域中更适合图像抗飞敏。简单而有效的方法可以欺骗基于取证探测器的深度学习和非深度学习,从而实现了更高的攻击成功率并显着提高了视觉质量。特别是,当对手将不可识别性视为约束时,在两个基线攻击中,在假面图像上,提出的抗法医学方法可以将平均攻击成功率提高约30 \%。 \ textIt {更不可感知}和\ textit {更可转移},提出的方法提出了新的安全问题,以伪造面部图像检测。我们已经发布了公众使用的代码,希望可以在相关的法医应用程序中进一步探索所提出的方法作为反法务基准。

Recently, generative adversarial networks (GANs) can generate photo-realistic fake facial images which are perceptually indistinguishable from real face photos, promoting research on fake face detection. Though fake face forensics can achieve high detection accuracy, their anti-forensic counterparts are less investigated. Here we explore more \textit{imperceptible} and \textit{transferable} anti-forensics for fake face imagery detection based on adversarial attacks. Since facial and background regions are often smooth, even small perturbation could cause noticeable perceptual impairment in fake face images. Therefore it makes existing adversarial attacks ineffective as an anti-forensic method. Our perturbation analysis reveals the intuitive reason of the perceptual degradation issue when directly applying existing attacks. We then propose a novel adversarial attack method, better suitable for image anti-forensics, in the transformed color domain by considering visual perception. Simple yet effective, the proposed method can fool both deep learning and non-deep learning based forensic detectors, achieving higher attack success rate and significantly improved visual quality. Specially, when adversaries consider imperceptibility as a constraint, the proposed anti-forensic method can improve the average attack success rate by around 30\% on fake face images over two baseline attacks. \textit{More imperceptible} and \textit{more transferable}, the proposed method raises new security concerns to fake face imagery detection. We have released our code for public use, and hopefully the proposed method can be further explored in related forensic applications as an anti-forensic benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源