论文标题
气相金属性的演变和恒星形成星系中的丰富度的演变为$ z \ of your z \大约0.6-1.8 $
The Evolution of Gas-Phase Metallicity and Resolved Abundances in Star-forming Galaxies at $z \approx0.6-1.8$
论文作者
论文摘要
我们对$ \ $ \ $ 650的星形星系的化学丰度特性进行了分析,分别是$ z \ of 0.6-1.8 $。使用$ K $ - 频带多对象光谱仪(KMOS)的整体场观测值,我们量化了[NII]/H $α$发射线比,这是星际介质中气相丰度的代理。我们将恒星质量金属关系定义为$ z \大约0.6-1.0 $和$ z \ os z \ of1.2-1.8 $,并分析关系中散布与基本星系属性之间的相关性形态)。我们发现,对于给定的恒星质量,更高的恒星形成,较大和不规则的星系具有较低的气相金属性,这可能归因于其较低的表面质量密度和不规则系统的较高气体分数。我们测量了星系中气相金属性的径向依赖性,建立了中位,梁涂抹校正,金属性梯度为$Δz/ΔR= 0.002 \ pm0.004 $ dex kpc $^{ - 1} $,这平均没有明显的依赖性。银河系的金属性梯度独立于其休息框光学形态,同时与其恒星质量和特定的恒星形成速率相关,与银河系进化的内部模型及其旋转优势一致。我们量化了金属性梯度的演变,将样品中$Δz/Δr$的分布与数值模拟和观测值进行比较$ z \ of0-3 $。样品中的星系比局部恒星形成星系表现出更平坦的金属性梯度,与数值模型一致,其中恒星反馈起着至关重要的作用重新分布金属。
We present an analysis of the chemical abundance properties of $\approx$650 star-forming galaxies at $z \approx0.6-1.8$. Using integral-field observations from the $K$-band Multi-Object Spectrograph (KMOS), we quantify the [NII]/H$α$ emission-line ratio, a proxy for the gas-phase Oxygen abundance within the interstellar medium. We define the stellar mass-metallicity relation at $z \approx0.6-1.0$ and $z \approx1.2-1.8$ and analyse the correlation between the scatter in the relation and fundamental galaxy properties (e.g. H$α$ star-formation rate, H$α$ specific star-formation rate, rotation dominance, stellar continuum half-light radius and Hubble-type morphology). We find that for a given stellar mass, more highly star-forming, larger and irregular galaxies have lower gas-phase metallicities, which may be attributable to their lower surface mass densities and the higher gas fractions of irregular systems. We measure the radial dependence of gas-phase metallicity in the galaxies, establishing a median, beam smearing-corrected, metallicity gradient of $ ΔZ/ ΔR=0.002 \pm0.004$ dex kpc$^{-1}$, indicating on average there is no significant dependence on radius. The metallicity gradient of a galaxy is independent of its rest-frame optical morphology, whilst correlating with its stellar mass and specific star-formation rate, in agreement with an inside-out model of galaxy evolution, as well as its rotation dominance. We quantify the evolution of metallicity gradients, comparing the distribution of $ΔZ/ ΔR$ in our sample with numerical simulations and observations at $z \approx0-3$. Galaxies in our sample exhibit flatter metallicity gradients than local star-forming galaxies, in agreement with numerical models in which stellar feedback plays a crucial role redistributing metals.