论文标题

深度学习合奏,用于实时重力波检测旋转二进制黑洞合并

Deep Learning Ensemble for Real-time Gravitational Wave Detection of Spinning Binary Black Hole Mergers

论文作者

Wei, Wei, Khan, Asad, Huerta, E. A., Huang, Xiaobo, Tian, Minyang

论文摘要

我们介绍了深度学习合奏在实时的,重力波检测的旋转二进制黑洞合并。该分析包括训练独立的神经网络,这些神经网络同时处理来自多个检测器的应变数据。然后将这些网络的输出组合并处理,以识别明显的噪声触发器。我们已经在O2和O3数据中应用了这种方法,发现深度学习合奏清楚地识别了在重力波开放科学中心可用的开源数据中二进制黑洞合并。我们还通过处理2017年8月的200小时开源Ligo噪声来基准了这种新方法的性能。我们的发现表明,我们的方法在高级Ligo数据中确定了实际的引力源,每2.7天的搜索数据每2.7天,误差为1个误差率。这些错误分类的随访将它们确定为故障。我们的深度学习合奏代表了第一类神经网络分类器,这些神经网络分类器经过数百万个建模的波形训练,这些波形描述了准圆,旋转,非偏向,二进制黑洞合并。一旦经过全面训练,我们的深度学习集合过程就使用4个NVIDIA V100 GPU的实时速度更快。

We introduce the use of deep learning ensembles for real-time, gravitational wave detection of spinning binary black hole mergers. This analysis consists of training independent neural networks that simultaneously process strain data from multiple detectors. The output of these networks is then combined and processed to identify significant noise triggers. We have applied this methodology in O2 and O3 data finding that deep learning ensembles clearly identify binary black hole mergers in open source data available at the Gravitational-Wave Open Science Center. We have also benchmarked the performance of this new methodology by processing 200 hours of open source, advanced LIGO noise from August 2017. Our findings indicate that our approach identifies real gravitational wave sources in advanced LIGO data with a false positive rate of 1 misclassification for every 2.7 days of searched data. A follow up of these misclassifications identified them as glitches. Our deep learning ensemble represents the first class of neural network classifiers that are trained with millions of modeled waveforms that describe quasi-circular, spinning, non-precessing, binary black hole mergers. Once fully trained, our deep learning ensemble processes advanced LIGO strain data faster than real-time using 4 NVIDIA V100 GPUs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源