论文标题
统一量规结构的黑洞内部
Black Hole Interior in Unitary Gauge Construction
论文作者
论文摘要
一个带有黑洞的量子系统可容纳两个截然不同的描述,尽管是相等的。在一个描述中,基于一般相对论的全局时空,内部区域的存在显现,而理解单位性需要非扰动量子重力效应,例如复制虫洞。另一种描述采用了明显的统一或全息描述,其中内部有效地成为基本自由度的集体现象。 在本文中,我们研究了后一种方法,我们将其称为统一量规结构。在这张图片中,黑洞的形成是由具有特殊动力学特性的表面(拉伸地平线)的出现信号:量子混乱,快速争夺和低能量普遍性。这些属性可以像我们明确的那样构建内部操作员,而无需依赖微观物理学的细节。某些粗制模式在区域区域(硬模式)中发挥了关键作用,该模式决定了与内部出现相关的自由度。 我们研究内部操作员如何在微晶格的空间中扩展或不能扩展,并分析与这种扩展相关的不可还原错误。这揭示了具有有限数量的自由度的半经典理论的内在歧义。我们提供了有效理论中计算内部相关因子的明确处方,该理论仅描述了时空的有限区域。我们详细研究了室内运营商的状态依赖性问题,并讨论了所得图片与全息量子校正校正解释的联系。
A quantum system with a black hole accommodates two widely different, though physically equivalent, descriptions. In one description, based on global spacetime of general relativity, the existence of the interior region is manifest, while understanding unitarity requires nonperturbative quantum gravity effects such as replica wormholes. The other description adopts a manifestly unitary, or holographic, description, in which the interior emerges effectively as a collective phenomenon of fundamental degrees of freedom. In this paper we study the latter approach, which we refer to as the unitary gauge construction. In this picture, the formation of a black hole is signaled by the emergence of a surface (stretched horizon) possessing special dynamical properties: quantum chaos, fast scrambling, and low energy universality. These properties allow for constructing interior operators, as we do explicitly, without relying on details of microscopic physics. A key role is played by certain coarse modes in the zone region (hard modes), which determine the degrees of freedom relevant for the emergence of the interior. We study how the interior operators can or cannot be extended in the space of microstates and analyze irreducible errors associated with such extension. This reveals an intrinsic ambiguity of semiclassical theory formulated with a finite number of degrees of freedom. We provide an explicit prescription of calculating interior correlators in the effective theory, which describes only a finite region of spacetime. We study the issue of state dependence of interior operators in detail and discuss a connection of the resulting picture with the quantum error correction interpretation of holography.