论文标题
半极化的Meromormorphic Hitchin和Calabi-yau可集成系统
Semi-polarized meromorphic Hitchin and Calabi-Yau integrable systems
论文作者
论文摘要
Dioconescu,Donagi和Pantev表明,ADE类型的Hitchin系统与某些Calabi-yau集成系统同构。在本文中,我们证明了A型A型的Meromorormormormormormorphic Hitchin Systems的设置,该系统已知为Poisson Antegnable Systems。我们考虑了Meromorormormormorphic Hitchin Antegsable系统的符合性,该系统在Kontsevich和Soibelman的意义上是半极化的集成系统。在希钦一侧,我们表明,无序的对角线框架捆绑的模量在这种意义上形成了一个可集成的系统,并恢复了Meromorormorphic Hitchin系统作为光纤的紧凑型商。然后,我们构建了一个新的准标准calabi-yau三倍的家族,并表明其相对中间的雅各布纤维作为半极化的集成系统,对无序的对角线框架框架的模量是同构的。
It was shown by Diaconescu, Donagi and Pantev that Hitchin systems of type ADE are isomorphic to certain Calabi-Yau integrable systems. In this paper, we prove an analogous result in the setting of meromorphic Hitchin systems of type A which are known to be Poisson integrable systems. We consider a symplectization of the meromorphic Hitchin integrable system, which is a semi-polarized integrable system in the sense of Kontsevich and Soibelman. On the Hitchin side, we show that the moduli space of unordered diagonally framed Higgs bundles forms an integrable system in this sense and recovers the meromorphic Hitchin system as the fiberwise compact quotient. Then we construct a new family of quasi-projective Calabi-Yau threefolds and show that its relative intermediate Jacobian fibration, as semi-polarized integrable systems, is isomorphic to the moduli space of unordered diagonally framed Higgs bundles.