论文标题

$ sl(2,\ mathbb {c})$的有限平均套件通过其cartan分解

On construction of finite averaging sets for $SL(2, \mathbb{C})$ via its Cartan decomposition

论文作者

Markiewicz, Marcin, Przewocki, Janusz

论文摘要

平均谎言群体的物理量出现在Quantum Information Science或量子光学等物理分支的许多情况下出现在许多情况下。这种平均过程总是可以表示为相对于该组的有限数量元素(称为有限平均集集)的平均值。在先前的研究中,这种类型的集合(称为$ t $ designss)仅是为平均统一团体(因此名称为单一$ t $ designs)构建的。在这项工作中,我们调查了构建有限平均集以在一般的非紧密矩阵谎言组上平均的有限平均设置的问题,这是更微妙的任务,因为这一事实是,在组歧管上的统一不变措施(HAAR度量)是无限的。我们根据该组的cartan分解提供了此类集合的一般结构,该组将小组分成紧凑和非紧密的组件。紧凑型部分上的平均值可以以统一的方式完成,而在非紧缩的零件上的平均值必须赋予一个良好的重量函数,并且可以使用广义高斯四倍体进行处理。这使我们达到了有限平均矩阵谎言基团的一般形式,以有限的平均套件相对于紧凑型和非压缩零件的乘积形式。我们为组$ sl(2,\ mathbb {c})$进行了明确的计算,尽管我们的构造可以应用于其他情况。我们的结果的可能应用涵盖了在量子信息科学和量子光学器件中找到随机操作的有限耐用,可用于随机量子算法的构造,包括光学干涉测量实现。

Averaging physical quantities over Lie groups appears in many contexts across the rapidly developing branches of physics like quantum information science or quantum optics. Such an averaging process can be always represented as averaging with respect to a finite number of elements of the group, called a finite averaging set. In the previous research such sets, known as $t$-designs, were constructed only for the case of averaging over unitary groups (hence the name unitary $t$-designs). In this work we investigate the problem of constructing finite averaging sets for averaging over general non-compact matrix Lie groups, which is much more subtle task due to the fact that the the uniform invariant measure on the group manifold (the Haar measure) is infinite. We provide a general construction of such sets based on the Cartan decomposition of the group, which splits the group into its compact and non-compact components. The averaging over the compact part can be done in a uniform way, whereas the averaging over the non-compact one has to be endowed with a suppresing weight function, and can be approached using generalised Gauss quadratures. This leads us to the general form of finite averaging sets for semisimple matrix Lie groups in the product form of finite averaging sets with respect to the compact and non-compact parts. We provide an explicit calculation of such sets for the group $SL(2, \mathbb{C})$, although our construction can be applied to other cases. Possible applications of our results cover finding finite ensambles of random operations in quantum information science and quantum optics, which can be used in constructions of randomised quantum algorithms, including optical interferometric implementations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源