论文标题
轴对称爱因斯坦 - 弗拉索夫系统中重力崩溃的动力学
Dynamics of gravitational collapse in the axisymmetric Einstein-Vlasov system
论文作者
论文摘要
我们从数值上研究了轴对称性中爱因斯坦 - vlasov系统的黑洞形成附近的动力学。我们的结果是使用基于$(2+1)+1 $ a轴对称性爱因斯坦场方程的$(2+1)+1 $公式的粒子和有限差代码获得的。解决方案是从非平稳的初始数据和I型关键行为启动的。特别是,我们发现包含黑洞的解决方案中的寿命缩放,并支持关键解决方案是固定的。我们的结果包含形成黑洞,进行阻尼振荡并似乎分散的解决方案的示例。我们证明溶液的完全分散意味着它具有非阳性结合能。
We numerically investigate the dynamics near black hole formation of solutions to the Einstein--Vlasov system in axisymmetry. Our results are obtained using a particle-in-cell and finite difference code based on the $(2+1)+1$ formulation of the Einstein field equations in axisymmetry. Solutions are launched from non-stationary initial data and exhibit type I critical behaviour. In particular, we find lifetime scaling in solutions containing black holes, and support that the critical solutions are stationary. Our results contain examples of solutions that form black holes, perform damped oscillations, and appear to disperse. We prove that complete dispersal of the solution implies that it has nonpositive binding energy.