论文标题
使用分层标签的注意网络和嵌入初始化的标签对临床笔记的可解释自动编码
Explainable Automated Coding of Clinical Notes using Hierarchical Label-wise Attention Networks and Label Embedding Initialisation
论文作者
论文摘要
临床笔记的诊断或程序编码旨在得出有关患者疾病相关信息的编码摘要。这种编码通常是在医院手动进行的,但有可能自动化以提高医疗编码的效率和准确性。关于自动化医学编码的深度学习的最新研究实现了有希望的表演。但是,这些模型的解释性通常很差,从而阻止它们自信地用于支持临床实践。另一个限制是,这些模型主要在标签之间具有独立性,而忽略了可以利用的医疗法规之间的复杂相关性,以提高性能。我们提出了一个层次标签的注意力网络(HLAN),该网络的目的是通过量化与每个标签相关的单词和句子的重要性(注意权重)来解释模型。其次,我们建议使用标签嵌入(LE)初始化方法来增强主要的深度学习模型,该方法学习了密集的,连续的矢量表示,然后将表示形式注入最终层中,并在模型中将标签的注意力层注入。我们在模拟III放电摘要上使用三个设置评估了方法:完整代码,前50个代码和英国NHS Covid-19屏蔽代码。进行了实验,将HLAN和LE初始化与最新神经网络方法进行比较。 HLAN在前50名代码预测中实现了最佳的微型AUC和$ F_1 $,并且在NHS Covid-19屏蔽代码预测到其他型号的NHS COVID-19上可比结果。通过强调每个标签的最显着词和句子,HLAN与降级的基线和基于CNN的模型相比,显示出更有意义,更全面的模型解释。 LE初始化始终提高了自动化医学编码的大多数深度学习模型。
Diagnostic or procedural coding of clinical notes aims to derive a coded summary of disease-related information about patients. Such coding is usually done manually in hospitals but could potentially be automated to improve the efficiency and accuracy of medical coding. Recent studies on deep learning for automated medical coding achieved promising performances. However, the explainability of these models is usually poor, preventing them to be used confidently in supporting clinical practice. Another limitation is that these models mostly assume independence among labels, ignoring the complex correlation among medical codes which can potentially be exploited to improve the performance. We propose a Hierarchical Label-wise Attention Network (HLAN), which aimed to interpret the model by quantifying importance (as attention weights) of words and sentences related to each of the labels. Secondly, we propose to enhance the major deep learning models with a label embedding (LE) initialisation approach, which learns a dense, continuous vector representation and then injects the representation into the final layers and the label-wise attention layers in the models. We evaluated the methods using three settings on the MIMIC-III discharge summaries: full codes, top-50 codes, and the UK NHS COVID-19 shielding codes. Experiments were conducted to compare HLAN and LE initialisation to the state-of-the-art neural network based methods. HLAN achieved the best Micro-level AUC and $F_1$ on the top-50 code prediction and comparable results on the NHS COVID-19 shielding code prediction to other models. By highlighting the most salient words and sentences for each label, HLAN showed more meaningful and comprehensive model interpretation compared to its downgraded baselines and the CNN-based models. LE initialisation consistently boosted most deep learning models for automated medical coding.