论文标题

Gens:生成编码网络

GENs: Generative Encoding Networks

论文作者

Saha, Surojit, Elhabian, Shireen, Whitaker, Ross T.

论文摘要

将数据和/或映射到已知的分布家族已成为机器学习和数据分析中的重要主题。深层生成模型(例如生成对抗网络)已有效地匹配已知和未知分布。但是,当已知目标分布的形式时,分析方法在提供可证明的属性的可靠结果方面是有利的。在本文中,我们提出和分析了非参数密度方法的使用,以估算詹森 - 香农的差异,以将未知的数据分布与潜在空间中的高斯或混合物相匹配,例如高斯或混合物。这种分析方法具有多个优点:训练样本数量低,可证明的收敛属性以及相对较少的参数时,更好的行为,可以通过分析得出。使用提出的方法,我们强制执行自动编码器的潜在表示,以匹配学习框架中的目标分布,我们称为{\ em em Generative编码网络}。在这里,我们提出数值方法;在潜在空间中得出数据的预期分布;评估潜在空间,样品重建和生成样品的特性;显示优于对手的优势;并演示该方法在现实世界中的应用。

Mapping data from and/or onto a known family of distributions has become an important topic in machine learning and data analysis. Deep generative models (e.g., generative adversarial networks ) have been used effectively to match known and unknown distributions. Nonetheless, when the form of the target distribution is known, analytical methods are advantageous in providing robust results with provable properties. In this paper, we propose and analyze the use of nonparametric density methods to estimate the Jensen-Shannon divergence for matching unknown data distributions to known target distributions, such Gaussian or mixtures of Gaussians, in latent spaces. This analytical method has several advantages: better behavior when training sample quantity is low, provable convergence properties, and relatively few parameters, which can be derived analytically. Using the proposed method, we enforce the latent representation of an autoencoder to match a target distribution in a learning framework that we call a {\em generative encoding network}. Here, we present the numerical methods; derive the expected distribution of the data in the latent space; evaluate the properties of the latent space, sample reconstruction, and generated samples; show the advantages over the adversarial counterpart; and demonstrate the application of the method in real world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源