论文标题
确切的自吻有效的哈密顿理论
Exact Self-Consistent Effective Hamiltonian Theory
论文作者
论文摘要
我们提出了一种一般的变分费用多体波函数,该波函数以二次形式产生有效的哈密顿量,然后可以精确解决。该理论可以在密度功能理论框架中构建,并提出了一种自洽的方案来解决确切的密度功能理论。我们将理论应用于结构排序的系统,对称和不对称的哈伯德二聚体以及相应的晶格模型。由于费米离子诱导的配对凝结物,单个费物激发光谱显示出持续的间隙。对于无序系统,差距边缘的状态密度在热力学极限中散开,表明拓扑排序的相位。由于间隙不取决于系统温度,因此预测了急剧的共振。对于对称Hubbard模型,半填充和掺杂的情况的间隙表明,抗铁磁和超导相之间的量子相变是连续的。
We propose a general variational fermionic many-body wavefunction that generates an effective Hamiltonian in a quadratic form, which can then be exactly solved. The theory can be constructed within the density functional theory framework, and a self-consistent scheme is proposed for solving the exact density functional theory. We apply the theory to structurally-disordered systems, symmetric and asymmetric Hubbard dimers, and the corresponding lattice models. The single fermion excitation spectra show a persistent gap due to the fermionic-entanglement-induced pairing condensate. For disordered systems, the density of states at the edge of the gap diverges in the thermodynamic limit, suggesting a topologically ordered phase. A sharp resonance is predicted as the gap is not dependent on the temperature of the system. For the symmetric Hubbard model, the gap for both half-filling and doped case suggests that the quantum phase transition between the antiferromagnetic and superconducting phases is continuous.