论文标题
sizeless:预测无服务器功能的最佳尺寸
Sizeless: Predicting the optimal size of serverless functions
论文作者
论文摘要
无服务器功能是一个云计算范式,提供商负责资源管理任务,例如资源提供,部署和自动规模。开发人员仍负责的唯一资源管理任务是选择分配了多少资源到每个工人实例。但是,选择无服务器功能的最佳尺寸非常具有挑战性,因此,尽管其成本和性能优势很高,但开发人员经常忽略它。旨在自动化无服务器功能资源尺寸的现有方法需要专门的性能测试,这是为了实现和维护时耗时的。在本文中,我们介绍了一种方法,可以使用来自单个资源大小的监视数据来预测无服务器函数的最佳资源大小。由于我们的方法不需要专用的性能测试,因此它使云提供商能够在平台级别上实现资源大小,并自动化与无服务器功能关联的最后一个资源管理任务。我们在三个不同的无服务器应用程序上评估了我们的方法,在其中选择了71.7%的无服务器功能的最佳内存大小,而第二好的内存大小则占无服务器功能的22.3%,这导致平均速度为43.6%,同时降低平均成本10.2%。
Serverless functions are a cloud computing paradigm where the provider takes care of resource management tasks such as resource provisioning, deployment, and auto-scaling. The only resource management task that developers are still in charge of is selecting how much resources are allocated to each worker instance. However, selecting the optimal size of serverless functions is quite challenging, so developers often neglect it despite its significant cost and performance benefits. Existing approaches aiming to automate serverless functions resource sizing require dedicated performance tests, which are time-consuming to implement and maintain. In this paper, we introduce an approach to predict the optimal resource size of a serverless function using monitoring data from a single resource size. As our approach does not require dedicated performance tests, it enables cloud providers to implement resource sizing on a platform level and automate the last resource management task associated with serverless functions. We evaluate our approach on three different serverless applications, where it selects the optimal memory size for 71.7% of the serverless functions and the second-best memory size for 22.3% of the serverless functions, which results in an average speedup of 43.6% while simultaneously decreasing average costs by 10.2%.