论文标题

Lipschitz常量$ \ log {n} $几乎可以肯定足以将$ n $网格点映射到一个立方体

Lipschitz constant $\log{n}$ almost surely suffices for mapping $n$ grid points onto a cube

论文作者

Dymond, Michael

论文摘要

kaluža,kopecká和作者表明,最好的lipschitz是映射的最佳lipschitz,以给定的$ n^{d} $ - 在整数晶格$ \ mathbb {z}^{d} $中设置的元素,以$ n \ in \ mathbb {n} $,$ n $ n $ n $ n $ n $ n $ n $ n $ n \ $ \ left \ {1,\ ldots,n \ right \}^{d} $可能是任意大的。但是,从上方或下面,这种最好的Lipschitz常数如何以$ n $的形式增长,但尚无已知的非平凡渐近渐近界限。我们从概率的角度解决了这个问题。更准确地说,我们考虑给定有限晶格内的$ n^{d} $点的随机配置,并确定,在最佳Lipschitz上,几乎可以肯定的是,$ \ log n $的渐近上限,将其映射的常数用于该集合的常规$ n $ n $ n $ n $ n $ n $ n $ n $ n $ gred $ \ weft \ weft \ weft \ weft \ weft \ weft \ weft \ weft \ weft \ weft \ weft \ weft \ weft \ weft \ weft \ ldots,ndots,ndots,n} \ prirgright。

Kaluža, Kopecká and the author have shown that the best Lipschitz constant for mappings taking a given $n^{d}$-element set in the integer lattice $\mathbb{Z}^{d}$, with $n\in \mathbb{N}$, surjectively to the regular $n$ times $n$ grid $\left\{1,\ldots,n\right\}^{d}$ may be arbitrarily large. However, there remain no known, non-trivial asymptotic bounds, either from above or below, on how this best Lipschitz constant grows with $n$. We approach this problem from a probabilistic point of view. More precisely, we consider the random configuration of $n^{d}$ points inside a given finite lattice and establish almost sure, asymptotic upper bounds of order $\log n$ on the best Lipschitz constant of mappings taking this set surjectively to the regular $n$ times $n$ grid $\left\{1,\ldots,n\right\}^{d}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源