论文标题

FAAS平台中的基准测试并行性

Benchmarking Parallelism in FaaS Platforms

论文作者

Barcelona-Pons, Daniel, García-López, Pedro

论文摘要

无服务器计算已经看到了无数的工作来探索其潜力。某些系统铲球功能-AS-AS-AS-Service(FAAS)属性在自动弹性和规模上以运行高度并行的计算作业。但是,他们专注于特定平台,并传达了他们的想法可以推断到任何FAA的运行时。 出现一个重要的问题:所有FAA平台是否符合并行计算?在本文中,我们认为并非所有这些都提供了托管高度并行应用的必要手段。为了验证我们的假设,我们创建了一个比较框架,并对四个云FAA产品的架构进行分类,从而强调并行性能。我们通过一个经验实验来证明并扩展了此描述,该实验包括深入详细介绍每种服务上平行计算作业的演变。 对我们的结果的分析表明,FAAS对平行计算的本质并不是跨平台的架构差异,可以决定其性能。一个关键的见解是虚拟化技术的重要性和FAAS平台的调度方法。由于资源分配和更快的弹性,并行性通过更轻的虚拟化和主动调度来改善。这会导致某些平台(例如AWS和IBM)在高度并行的计算中表现良好,而其他平台(例如Azure)出现了实现所需并行性度的困难。因此,本文中的信息引起了特别的兴趣,可以帮助用户为其并行应用选择最适当的基础架构。

Serverless computing has seen a myriad of work exploring its potential. Some systems tackle Function-as-a-Service (FaaS) properties on automatic elasticity and scale to run highly-parallel computing jobs. However, they focus on specific platforms and convey that their ideas can be extrapolated to any FaaS runtime. An important question arises: do all FaaS platforms fit parallel computations? In this paper, we argue that not all of them provide the necessary means to host highly-parallel applications. To validate our hypothesis, we create a comparative framework and categorize the architectures of four cloud FaaS offerings, emphasizing parallel performance. We attest and extend this description with an empirical experiment that consists in plotting in deep detail the evolution of a parallel computing job on each service. The analysis of our results evinces that FaaS is not inherently good for parallel computations and architectural differences across platforms are decisive to categorize their performance. A key insight is the importance of virtualization technologies and the scheduling approach of FaaS platforms. Parallelism improves with lighter virtualization and proactive scheduling due to finer resource allocation and faster elasticity. This causes some platforms like AWS and IBM to perform well for highly-parallel computations, while others such as Azure present difficulties to achieve the required parallelism degree. Consequently, the information in this paper becomes of special interest to help users choose the most adequate infrastructure for their parallel applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源