论文标题

评估预测不确定性估计的鲁棒性:基于Dirichlet的模型是否可靠?

Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable?

论文作者

Kopetzki, Anna-Kathrin, Charpentier, Bertrand, Zügner, Daniel, Giri, Sandhya, Günnemann, Stephan

论文摘要

基于Dirichlet的不确定性(DBU)模型是最近且有希望的不确定性感知模型。 DBU模型预测了Dirichlet分布的参数,可与类预测一起提供快速,高质量的不确定性估计。在这项工作中,我们介绍了第一个大规模的,深入的研究,对在对抗攻击下DBU模型的鲁棒性。我们的结果表明,DBU模型的不确定性估计并非强大的W.R.T.三个重要任务:(1)正确和错误地分类的样本; (2)检测对抗性例子; (3)区分分布(ID)和分布(OOD)数据。此外,我们探讨了使DBU模型更强大的第一个方法。尽管对抗训练的效果很小,但我们的基于平滑的方法可显着提高DBU模型的鲁棒性。

Dirichlet-based uncertainty (DBU) models are a recent and promising class of uncertainty-aware models. DBU models predict the parameters of a Dirichlet distribution to provide fast, high-quality uncertainty estimates alongside with class predictions. In this work, we present the first large-scale, in-depth study of the robustness of DBU models under adversarial attacks. Our results suggest that uncertainty estimates of DBU models are not robust w.r.t. three important tasks: (1) indicating correctly and wrongly classified samples; (2) detecting adversarial examples; and (3) distinguishing between in-distribution (ID) and out-of-distribution (OOD) data. Additionally, we explore the first approaches to make DBU models more robust. While adversarial training has a minor effect, our median smoothing based approach significantly increases robustness of DBU models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源