论文标题
锥体结构和抛物线几何形状
Cone structures and parabolic geometries
论文作者
论文摘要
复杂的歧管$ m $上的圆锥结构是一个封闭的Submanifold $ \ Mathcal C \ subset \ Mathbb P tm $的Projectivized切线捆绑包,该捆绑包在$ M $上是稀有的。 $ \ Mathcal c $上的圆锥连接指定了$ \ Mathcal c $指定的方向上的$ m $的杰出曲线家族。锥体结构和圆锥连接的共同来源有两个,一个是差异几何形状,另一个是代数几何形状。在差异几何形状中,我们具有由全态抛物线几何形状的几何结构诱导的锥体结构,一个经典的例子是圆锥形结构结构的空锥束。在代数几何形状中,我们的锥结构由最小的理性切线(VMRT)组成,该品种由最小的理性曲线在未释放的投影歧管上给出。抛物线几何形状中锥体结构的局部不变性是由抛物线几何形状的曲率给出的,抛物线层的几何形状的性质取决于抛物线几何形状的类型,即$ \ Mathcal c \ to M $的$ \ Mathcal C \的纤维类型。对于VMRT结构,圆锥连接的更固有的不变性不取决于纤维的类型起着重要作用。我们研究了这两个不同方面的关系,这是由抛物线几何形状引起的与复杂简单的谎言代数相关的抛物线几何形状引起的。作为应用程序,我们获得了由于MOK和HONG-HWANG而导致的全局代数几何识别定理的局部微分几何版本。在我们的本地版本中,理性曲线的作用被圆锥连接的适当扭转条件完全取代。
A cone structure on a complex manifold $M$ is a closed submanifold $\mathcal C \subset \mathbb P TM$ of the projectivized tangent bundle which is submersive over $M$. A conic connection on $\mathcal C$ specifies a distinguished family of curves on $M$ in the directions specified by $\mathcal C$. There are two common sources of cone structures and conic connections, one in differential geometry and another in algebraic geometry. In differential geometry, we have cone structures induced by the geometric structures underlying holomorphic parabolic geometries, a classical example of which is the null cone bundle of a holomorphic conformal structure. In algebraic geometry, we have the cone structures consisting of varieties of minimal rational tangents (VMRT) given by minimal rational curves on uniruled projective manifolds. The local invariants of the cone structures in parabolic geometries are given by the curvature of the parabolic geometries, the nature of which depend on the type of the parabolic geometry, i.e., the type of the fibers of $\mathcal C \to M$. For the VMRT-structures, more intrinsic invariants of the conic connections which do not depend on the type of the fiber play important roles. We study the relation between these two different aspects for the cone structures induced by parabolic geometries associated with a long simple root of a complex simple Lie algebra. As an application, we obtain a local differential-geometric version of the global algebraic-geometric recognition theorem due to Mok and Hong--Hwang. In our local version, the role of rational curves is completely replaced by appropriate torsion conditions on the conic connection.