论文标题
优化脉冲图案问题的凸松弛方法
A convex relaxation approach for the optimized pulse pattern problem
论文作者
论文摘要
优化的脉冲图案(OPP)由于其固有的能力提供了优化当前谐波扭曲的开关实例,因此在脉动宽度调制的脉冲宽度调制上,电力电子社区的普及程度越来越高。特别是,OPP问题可最大程度地减少在基本波浪时期切换实例数量下的基数限制下的当前谐波畸变。但是,OPP问题是涉及多项式和三角函数的非凸面。在现有文献中,使用具有本地融合保证的现成的求解器解决了OPP问题。为了获得全球最优性的保证,我们采用和扩展了多项式优化文献的技术,并提供了具有全球收敛保证的解决方案。具体而言,我们提出了对OPP问题的多项式近似,然后利用了经过良好研究的全球融合凸弛豫层次结构,即半准编程和相对熵弛豫。结果层次结构被证明是融合到全局最佳解决方案的。我们的方法对OPP问题表现出强大的性能,每季度最多50个切换实例。
Optimized Pulse Patterns (OPPs) are gaining increasing popularity in the power electronics community over the well-studied pulse width modulation due to their inherent ability to provide the switching instances that optimize current harmonic distortions. In particular, the OPP problem minimizes current harmonic distortions under a cardinality constraint on the number of switching instances per fundamental wave period. The OPP problem is, however, non-convex involving both polynomials and trigonometric functions. In the existing literature, the OPP problem is solved using off-the-shelf solvers with local convergence guarantees. To obtain guarantees of global optimality, we employ and extend techniques from polynomial optimization literature and provide a solution with a global convergence guarantee. Specifically, we propose a polynomial approximation to the OPP problem to then utilize well-studied globally convergent convex relaxation hierarchies, namely, semi-definite programming and relative entropy relaxations. The resulting hierarchy is proven to converge to the global optimal solution. Our method exhibits a strong performance for OPP problems up to 50 switching instances per quarter wave.