论文标题

降低速度原则的深网络

Deep Networks from the Principle of Rate Reduction

论文作者

Chan, Kwan Ho Ryan, Yu, Yaodong, You, Chong, Qi, Haozhi, Wright, John, Ma, Yi

论文摘要

这项工作试图从降低速率和(偏移)不变分类的原理中解释现代深层(卷积)网络。我们表明,优化学习特征的速度降低的基本迭代梯度上升方案自然会导致多层深网,每层迭代。通过模拟梯度方案,分层体系结构,线性和非线性运算符甚至网络的参数都是以向前传播方式明确构造的。该“白框”网络的所有组件都具有精确的优化,统计和几何解释。这个原则性的框架还揭示了并证明在深网的早期阶段,多渠道提升和稀疏编码的作用是合理的。此外,当我们执行严格的转移不变时,所谓网络的所有线性操作员自然都会成为多渠道卷积。该派生还表明,这种卷积网络在光谱域中构造和学习的效率明显更高。我们的初步模拟和实验表明,即使没有任何背部传播训练,因此,即使没有任何背部传播训练,因此构造的深网已经可以学习良好的判别性表示。

This work attempts to interpret modern deep (convolutional) networks from the principles of rate reduction and (shift) invariant classification. We show that the basic iterative gradient ascent scheme for optimizing the rate reduction of learned features naturally leads to a multi-layer deep network, one iteration per layer. The layered architectures, linear and nonlinear operators, and even parameters of the network are all explicitly constructed layer-by-layer in a forward propagation fashion by emulating the gradient scheme. All components of this "white box" network have precise optimization, statistical, and geometric interpretation. This principled framework also reveals and justifies the role of multi-channel lifting and sparse coding in early stage of deep networks. Moreover, all linear operators of the so-derived network naturally become multi-channel convolutions when we enforce classification to be rigorously shift-invariant. The derivation also indicates that such a convolutional network is significantly more efficient to construct and learn in the spectral domain. Our preliminary simulations and experiments indicate that so constructed deep network can already learn a good discriminative representation even without any back propagation training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源