论文标题

Eldersim:在老年保健应用中识别人类行动识别的合成数据生成平台

ElderSim: A Synthetic Data Generation Platform for Human Action Recognition in Eldercare Applications

论文作者

Hwang, Hochul, Jang, Cheongjae, Park, Geonwoo, Cho, Junghyun, Kim, Ig-Jae

论文摘要

为了培训深度学习模型以识别长者日常活动的基于视觉的行动识别,我们需要在各种日常生活环境和条件下获得的大规模活动数据集。但是,在人类行动识别中使用的大多数公共数据集与多个方面的长者活动的覆盖率有所不同,或者在许多方面的覆盖范围有限,这使得仅利用现有数据集就可以很好地识别长者的日常活动。最近,通过从现实的仿真环境中生成合成数据并使用这些数据来训练深度学习模型,从而积极补偿了可用数据集的这种局限性。在本文中,基于这些想法,我们开发了Eldersim,这是一个动作模拟平台,可以生成有关长者日常活动的综合数据。对于长者的55种频繁日常活动,Eldersim会产生具有各种可调数据生成选项的合成字符的现实动作,并提供不同的输出方式,包括RGB视频,二维和三维骨架轨迹。然后,我们生成Kist Synadl,这是一种大规模的合成数据集,用于从Eldersim到Eldersim的长老活动活动,除了实际数据集外,还使用数据来培训三种最先进的人类行动识别模型。从几个新提出的方案之后的实验中,这些方案采用了不同的真实和合成数据集配置进行培训,我们通过增强合成数据来观察到明显的性能提高。我们还提供了有关有效利用合成数据的见解,以帮助认识长者的日常活动。

To train deep learning models for vision-based action recognition of elders' daily activities, we need large-scale activity datasets acquired under various daily living environments and conditions. However, most public datasets used in human action recognition either differ from or have limited coverage of elders' activities in many aspects, making it challenging to recognize elders' daily activities well by only utilizing existing datasets. Recently, such limitations of available datasets have actively been compensated by generating synthetic data from realistic simulation environments and using those data to train deep learning models. In this paper, based on these ideas we develop ElderSim, an action simulation platform that can generate synthetic data on elders' daily activities. For 55 kinds of frequent daily activities of the elders, ElderSim generates realistic motions of synthetic characters with various adjustable data-generating options, and provides different output modalities including RGB videos, two- and three-dimensional skeleton trajectories. We then generate KIST SynADL, a large-scale synthetic dataset of elders' activities of daily living, from ElderSim and use the data in addition to real datasets to train three state-of the-art human action recognition models. From the experiments following several newly proposed scenarios that assume different real and synthetic dataset configurations for training, we observe a noticeable performance improvement by augmenting our synthetic data. We also offer guidance with insights for the effective utilization of synthetic data to help recognize elders' daily activities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源