论文标题

AM-RRT*:协助指标的知情基于抽样的计划

AM-RRT*: Informed Sampling-based Planning with Assisting Metric

论文作者

Armstrong, Daniel, Jonasson, André

论文摘要

在本文中,我们提出了一种新算法,该算法扩展了RRT*和RT-RRT*,以在复杂的动态环境中进行在线路径计划。基于抽样的方法通常在段落狭窄的环境中表现不佳,这是许多室内应用程序以及计算机游戏的功能。我们的方法扩展了基于RRT的采样方法,以实现辅助距离指标的使用以提高障碍物环境的性能。当视线被阻止时,这种辅助度量可以是任何具有比欧几里得指标更好的属性的度量标准,它与标准的欧几里得公制结合使用,以使算法可以从辅助度量中受益的同时保持最佳的RRT变异性属性(即概率的完整性),并在树上的范围内保持良好的范围。我们还引入了一种新的目标重新布线方法,旨在缩短目标反复转移的任务中的搜索时间和路径长度。我们证明,当使用扩散距离作为辅助指标时,我们的方法比现有的多Query计划者(例如RT-RRT*)提供了可观的改进;在几个数量级的搜索时间下,找到近乎最佳的路径。实验结果表明,在各种环境中,计划时间缩短了99.5%,路径长度减少了9.8%。

In this paper, we present a new algorithm that extends RRT* and RT-RRT* for online path planning in complex, dynamic environments. Sampling-based approaches often perform poorly in environments with narrow passages, a feature common to many indoor applications of mobile robots as well as computer games. Our method extends RRT-based sampling methods to enable the use of an assisting distance metric to improve performance in environments with obstacles. This assisting metric, which can be any metric that has better properties than the Euclidean metric when line of sight is blocked, is used in combination with the standard Euclidean metric in such a way that the algorithm can reap benefits from the assisting metric while maintaining the desirable properties of previous RRT variants - namely probabilistic completeness in tree coverage and asymptotic optimality in path length. We also introduce a new method of targeted rewiring, aimed at shortening search times and path lengths in tasks where the goal shifts repeatedly. We demonstrate that our method offers considerable improvements over existing multi-query planners such as RT-RRT* when using diffusion distance as an assisting metric; finding near-optimal paths with a decrease in search time of several orders of magnitude. Experimental results show planning times reduced by 99.5% and path lengths by 9.8% over existing real-time RRT planners in a variety of environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源